Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 65, 2024 - Issue 3
291
Views
0
CrossRef citations to date
0
Altmetric
Regular Paper

Experimental study on the piezo-based energy harvester utilizing the ambient vibrations for smart applications

&
Pages 1013-1024 | Received 02 Nov 2023, Accepted 02 Jan 2024, Published online: 19 Mar 2024

References

  • Harb A. Energy harvesting: state-of-the-art. Renew Energy. 2011;36:2641–2654. doi:10.1016/j.renene.2010.06.014
  • Vullers RJ, van Schaijk R, Doms I, et al. Micropower energy harvesting. Solid-State Electron 2009;53(7):684–693. doi:10.1016/j.sse.2008.12.011
  • Uchino K, Ishii T. Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics. 2010;400:305–320. doi:10.1080/00150193.2010.505852
  • Asthana P, Khanna G. An autonomous piezoelectric energy harvesting system for smart sensor nodes in IoT applications. Appl Phys A Mater Sci Process. 2021;127:1–11. doi:10.1007/s00339-021-04976-x
  • Rubes O, Chalupa J, Ksica F, et al. Development and experimental validation of self-powered wireless vibration sensor node using vibration energy harvester. Mech Syst Signal Process. 2021;160:107890. doi:10.1016/j.ymssp.2021.107890
  • Kim JH, Cho JY, Jhun JP, et al. Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform. Energy. 2021;222:119845. doi:10.1016/j.energy.2021.119845
  • Liu Y, Khanbareh H, Halim MA, et al. Piezoelectric energy harvesting for self-powered wearable upper limb applications. Nano Sel. 2021;2:1–21.
  • Sodano HA, Inman DJ, Park G. A review of power harvesting from vibration using piezoelectric materials. Shock Vibr Dig. 2004;36:197–205. doi:10.1177/0583102404043275
  • Pillatsch P, Xiao B, Shashoua N, et al. Degradation of bimorph piezoelectric bending beams in energy harvesting applications. Smart Mater Struct 2017;26:035046, doi:10.1088/1361-665X/aa5a5d
  • Priya S. Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram. 2007;19(1):167–184. doi:10.1007/s10832-007-9043-4
  • Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006;312(5771):242–246. doi:10.1126/science.1124005
  • Jeon YB, Sood R, Jeong JH, et al. MEMS power generator with transverse mode thin film PZT. Sens Actuators A. 2005;122(1):16–22. doi:10.1016/j.sna.2004.12.032
  • Gafforelli G, Corigliano A, Xu R, et al. Experimental verification of a bridge-shaped, nonlinear vibration energy harvester. Appl Phys Lett. 2012;105(20):203901, doi:10.1063/1.4902116
  • Park JC, Park JY, Lee YP. Modeling and Characterization of Piezoelectric $d_{33}$ -Mode MEMS Energy Harvester. J Micro Electr Mech Syst. 2010;19(5):1215–1222. doi:10.1109/JMEMS.2010.2067431
  • Beeby SP, Tudor MJ, White NM. Energy harvesting vibration sources for Microsystems applications. Meas Sci Technol. 2006;17(12):R175, doi:10.1088/0957-0233/17/12/R01
  • Raju SS, Choi SB, Umapathy M, et al. An effective energy harvesting in low frequency using a piezo-patch cantilever beam with tapered rectangular cavities. Sens Actuators A. 2019;297.
  • Ramalingam U, Gandhi U, Mangalanathan U, et al. A new piezoelectric energy harvester using two beams with tapered cavity for high power and wide broadband. Int J Mech Sci. 2018;142.
  • Srinivasulu Raju S, Umapathy M, Uma G. Design and analysis of high-output piezoelectric energy harvester using non-uniform beam. J Mech Adv Mater Struct. 2018;27:1–10.
  • Čeponis A, Mažeika D, Bakanauskas V. Trapezoidal cantilevers with irregular cross-sections for energy harvesting systems. Int J Appl Sci. 2017;7:134.
  • Berdy DF, Jung B, Rhoads JF, et al. Wide-bandwidth, meandering vibration energy harvester with distributed circuit board inertial mass. Sens Actuators A 2012;188:148–157. doi:10.1016/j.sna.2012.01.043
  • Anton SR, Sodano HA. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 2007;16:1–21. doi:10.1088/0964-1726/16/3/R01
  • Sodano HA, Inman DJ, Park G. Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Syst Struct 2005;16(10):799–807. doi:10.1177/1045389X05056681
  • Usharani R, Uma G, Umapathy M, et al. Design of high output broadband piezoelectric energy harvester. J Mech Sci Technol 2017;31:3131–3142. doi:10.1007/s12206-017-0603-5
  • Elahi H, Munir K, Eugeni M, et al. Energy harvesting towards self-powered IoT devices. Energies. 2020;13(21):5528, doi:10.3390/en13215528
  • Jeong SY, Xu LL, Ryu CH, et al. Wearable shoe-mounted piezoelectric energy harvester for a self-powered wireless communication system. Energies. 2022;15(1):237. doi:10.3390/en15010237
  • Zabek D, Pullins R, Pearson M, et al. Piezoelectric-silicone structure for vibration energy harvesting: experimental testing and modelling. Smart Mater Struct. 2021;30(3):035002, doi:10.1088/1361-665X/abd964
  • Liao Y, Liang J. Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters. Smart Mater Struct. 2018;27(7):075053, doi:10.1088/1361-665X/aaca56
  • Chen CT, Islam RA, Priya S. Electric energy generator. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(3):656–661. doi:10.1109/TUFFC.2006.1610576
  • Mohamed K, Elgamal H, Kouritem SA. An experimental validation of a new shape optimization technique for piezoelectric harvesting cantilever beams. Alexandria Eng J. 2021;60(1):1751–1766. doi:10.1016/j.aej.2020.11.024
  • Homayouni-Amlashi A, Mohand-Ousaid A, Rakotondrabe M. Analytical modelling and optimization of a piezoelectric cantilever energy harvester with in-span attachment. Micromachines (Basel). 2020;11(6):591, doi:10.3390/mi11060591