Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 1
115
Views
0
CrossRef citations to date
0
Altmetric
Mineral Processing

Evaluation of the statistical reliability of micro-flotation experiments using a hallimond flotation cell

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 153-162 | Received 09 Sep 2022, Accepted 15 Dec 2022, Published online: 26 Dec 2022

References

  • Xie L, Wang J, Lu Q, et al. Surface interaction mechanisms in mineral flotation: fundamentals,: measurements, and perspectives. Adv Colloid Interface Sci. 2021;295:102491. doi:10.1016/j.cis.2021.102491.
  • Nagaraj DR, Farinato RS. Evolution of flotation chemistry and chemicals: A century of innovations and the lingering challenges. Miner Eng. 2016;96:2–14. doi:10.1016/j.mineng.2016.06.019.
  • Kyzas GZ, Matis KA. Flotation in water and wastewater treatment. Process. 2018;6:116. doi:10.3390/pr6080116.
  • Zhang Y, Jiang H, Bian K, et al. Is froth flotation a potential scheme for microplastics removal? analysis on flotation kinetics and surface characteristics. Sci Total Environ. 2021;792:148345. doi:10.1016/j.scitotenv.2021.148345.
  • Huang J, Chen H, Zheng Y, et al. Microplastic pollution in soils and groundwater: characteristics, analytical methods and impacts. Chem Eng J. 2021;425:131870. doi:10.1016/j.cej.2021.131870.
  • Herrera R. Recent developments and advances in formulations and applications of chemical reagents used in froth flotation. Miner Process Extr Metall Rev. 2003;24:139–182. doi:10.1080/08827500306898.
  • Wang G, Ge L, Mitra S, et al. A review of CFD modelling studies on the flotation process. Miner Eng. 2018;127:153–177. doi:10.1016/j.mineng.2018.08.019.
  • Hallimond AF. Laboratory apparatus for flotation tests. Min Mag. 1944;70:87–91.
  • Drzymala J. Characterization of materials by Hallimond tube flotation. Part 1: maximum size of entrained particles. Int J Miner Process. 1994;42:139–152. doi:10.1016/0301-7516(94)00036-0.
  • Wang S, Liu K, Ma X, et al. Comparison of flotation performances of low-rank coal with lower ash content using air and oily bubbles. Powder Technol. 2020;373:443–448. doi:10.1016/j.powtec.2020.07.058.
  • Wang H, Feng L, Manica R, et al. Selective depression of millerite (β-NiS) by polysaccharides in alkaline solutions in Cu-Ni sulphides flotation separation. Miner Eng. 2021;172:107139. doi:10.1016/j.mineng.2021.107139.
  • Horasan U, Tanrıverdi M, Ciçek T, et al. Investigating the effects of ultrasonic energy on the flotation behavior of pyrite and galena minerals. Physicochem Probl Miner Process. 2020;56:538–547. doi:10.37190/ppmp/120291.
  • Cai J, Liu D, Shen P, et al. Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation. Miner Eng. 2021;169:106956. doi:10.1016/j.mineng.2021.106956.
  • Huang Q, Yang X, Honaker RQ. Evaluation of frother types for improved flotation recovery and selectivity. Minerals. 2019;9:590. doi:10.3390/min9100590.
  • Cho YS, Laskowski JS. Effect of flotation frothers on bubble size and foam stability. Int J Miner Process. 2002;64:69–80. doi:10.1016/S0301-7516(01)00064-3.
  • Ren L, Zeng W, Nguyen AV, et al. Effects of bubble size,: velocity, and particle agglomeration on the electro-flotation kinetics of fine cassiterite. Asia-Pac J Chem Eng. 2019;14:e2333. doi:10.1002/apj.2333.
  • Ostadrahimi M, Gharibi K, Dehghani A, et al. Estimating bubble loading in industrial flotation cells. Minerals. 2019;9:222. doi:10.3390/min9040222.
  • Messey FJ. The kolmogorov-smirnov test for goodness of Fit. J Am Stat Assoc. 1951;46:68–78. doi:10.1080/01621459.1951.10500769.
  • Rees DG. Essential statistics. Boston: Springer; 1951; p. 258. doi:10.1007/978-1-4899-7260-6.
  • Reh W, Scheffler B. Significance tests and confidence intervals for coefficients of variation. CSDA. 1996;22:449–452. doi:10.1016/0167-9473(96)83707-8.
  • Khatun N. Applications of normality test in statistical analysis. Open J Stat. 2021;11:113–122. doi:10.4236/ojs.2021.111006.
  • Feltz CJ, Miller GE. An asymptotic test for the equality of coefficients of variation from k populations. Stat Med. 1996;15:647–658. doi:10.1002/(sici)1097-0258(19960330)15:6%3C647::aid-sim184%3E3.0.co;2-p.
  • Krishnamoorthy K, Meesook L. Improved tests for the equality of Normal coefficients of variation. Comput Stat. 2014;29:215–232. doi:10.1007/s00180-013-0445-2.
  • Marwick B, Krishnamoorthy K. R software package cvequality: Tests for the Equality of Coefficients of Variation from Multiple Groups. Version 0.1.3 [software]. 2019 Jul 1 [cited 2022 Nov 10]. Available from: https://github.com/benmarwick/cvequality.
  • BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM). 2008.
  • Reis AS, Reis Filho AM, Demuner LR, et al. Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore. Powder Technol. 2019;356:884–891. doi:10.1016/j.powtec.2019.09.029.
  • Zhu H, López Valdivieso A, Zhu J, et al. A study of bubble size evolution in Jameson flotation cell. Chem Eng Res Des. 2018;137:461–466. doi:10.1016/j.cherd.2018.08.005.
  • Drzymala J. Characterization of materials by Hallimond tube flotation, part 3. maximum size of floating and interacting particles. Int J Miner Process. 1999;55:203–218. doi:10.1016/S0301-7516(98)00033-7.
  • Woodburn ET, King RP, Colborn RP. The effect of particle size distribution on the performance of a phosphate flotation process. Metall Mater Trans B. 1971;2:3163–3174. doi:10.1007/BF02814969.
  • Ran J, Qiu X, Hu Z, et al. Effects of particle size on flotation performance in the separation of copper,: gold and lead. Powder Technol. 2019;344:654–664. doi:10.1016/j.powtec.2018.12.045.
  • Fang J, Gea Y, Yu J. Effects of particle size and wettability on froth stability in a collophane flotation system. Powder Technol. 2021;379:576–584. doi:10.1016/j.powtec.2020.11.028.
  • Achaye I, Wiese J, McFadzean B. Effect of mineral particle size on froth stability. Miner Process Extr Metall Rev. 2021;130:253–261. doi:10.1080/25726641.2019.1606147.
  • Norori-McCormac A, Brito-Parada PR, Hadler K, et al. The effect of particle size distribution on froth stability in flotation. Sep Purif Technol. 2017;184:240–247. doi:10.1016/j.seppur.2017.04.022.
  • Luo X, Song S, Ma M, et al. Effect of particle size on flotation performance of hematite. Physicochem Probl Miner Process. 2019;55:479–493. doi:10.5277/ppmp18156.
  • O’Brien SF, Yi QF. How do I interpret a confidence interval? Transfusion. 2016;56:1680–1683. doi:10.1111/trf.13635.
  • Simundic AM. Confidence interval. Biochem Med. 2008;18:154–161. doi:10.11613/BM.2008.015.
  • Joanes DN, Gill CA. Comparing measures of sample skewness and kurtosis. J R Stat Soc Ser D Stat. 1998;47:183–189. doi:10.1111/1467-9884.00122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.