Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 1
92
Views
0
CrossRef citations to date
0
Altmetric
Extractive Pyrometallurgy - Nonferrous

Direct smelting process of copper carbonate ore using SiO2 as fluxing agent in electric arc furnace

, , , &
Pages 226-234 | Received 26 Jul 2022, Accepted 12 Feb 2023, Published online: 02 Mar 2023

References

  • Schipper BW, Lin H-C, Meloni MA, et al. Estimating global copper demand until 2100 with regression and stock dynamics. Resour Conserv Recycl. 2018;132:28–36. doi:10.1016/j.resconrec.2018.01.004.
  • He R, Small MJ. Forecast of the U.S. copper demand: a framework based on scenario analysis and stock dynamics. Environ Sci Technol. 2022;56:2709–2717. doi:10.1021/acs.est.1c05080.
  • Dong D, Tukker A, Voet Evd. Modeling copper demand in China up to 2050: a business-as-usual scenario based on dynamic stock and flow analysis. J Ind Ecol. 2019;23:1363–1380. doi:10.1111/jiec.12926.
  • Dong D, Oers Lv, Tukker A, et al. Assessing the future environmental impacts of copper production in China: implications of the energy transition. J Cleaner Prod. 2020;274:122825. doi:10.1016/j.jclepro.2020.122825.
  • Pietrzyk S, Tora B. Trends in global copper mining – a review. IOP Conf Ser: Mater Sci Eng. 2018;427:012002. doi:10.1088/1757-899X/427/1/012002.
  • Moskalyk RR, Alfantazi AM. Review of copper pyrometallurgical practice: today and tomorrow. Miner Eng. 2003;16(10):893–919. doi:10.1016/j.mineng.2003.08.002.
  • Rotzer N, Schmidt M. Historical, current, and future energy demand from global copper production and Its impact on climate change. Resources. 2020;9(44):1–31. doi:10.3390/resources9040044.
  • Sethurajan M, Hullebusch EDv, Fontana D, et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes – a review. Crit Rev Environ Sci Technol. 2019;49(3):212–275. doi:10.1080/10643389.2018.1540760.
  • Kang C-U, Ji S-E, Pabst T, et al. Copper extraction from oxide ore of Almalyk Mine by H2SO4 in simulated heap leaching: effect of particle size and acid concentration. Minerals. 2021;11(9):1020. doi:10.3390/min11091020.
  • Ekmekyapar E, Demirkiran N, Kunkul A, et al. Leaching of malachite ore in ammonium sulfate solutions and production of copper oxide. Braz J Chem Eng. 2015;32:1–12. doi:10.1590/0104-6632.20150321s00003020.
  • Marmiroli B, Rigamonti L, Brito-Parada PR. Life cycle assessment in mineral processing – a review of the role of flotation. Int J Life Cycle Assess. 2022;27:62–81. doi:10.1007/s11367-021-02005-w.
  • Memary R, Giurco D, Mudd G, et al. Life cycle assessment: a time-series analysis of copper. J Cleaner Prod. 2012;33:97–108. doi:10.1016/j.jclepro.2012.04.025.
  • Shin S-H, Kim S-J. Influence of slag composition on the distribution behavior of Cu between liquid sulfide and Cu-containing multicomponent slag via thermodynamic and kinetic assessment. Metals (Basel). 2021;11(1):150. doi:10.3390/met11010150.
  • Isaksson J, Vikström T, Lennartsson A, et al. Influence of process parameters on copper content in reduced iron silicate slag in a settling furnace. Metals (Basel). 2021;11(6):992. doi:10.3390/met11060992.
  • Schonewille RH, O’Connell GJ, Toguri JM. A quantitative method for silica flux evaluation. Metall Mater Trans B. 1993;24:63–73. doi:10.1007/BF02657873.
  • Wang B, Yang H, Jin Z, et al. Effect of Fe/SiO2 ratio and Fe2O3 on the viscosity and slag structure of copper-smelting slags. Metals (Basel). 2022;12(1):24. doi:10.3390/met12010024.
  • Neuhold S, Algermissen D, Drissen P, et al. Tailoring the FeO/SiO2 ratio in electric arc furnace slags to minimize the leaching of vanadium and chromium. Appl Sci. 2020;10(7):2549. doi:10.3390/app10072549.
  • Ammasi A. Effect of heating rate on decomposition temperature of goethite ore. Trans Indian Inst Met. 2020;73:93–98. doi:10.1007/s12666-019-01806-w.
  • Bale CW, Bélisle E, Chartrand P, et al. Factsage thermochemical software and databases, 2010-2016. Calphad. 2016;54:35–53. www.factsage.com, FactsageEdu version.
  • Mackey PJ. The physical chemistry of copper smelting slags—a review. Can Metall Q. 1982;21(3):221–260. doi:10.1179/cmq.1982.21.3.221.
  • Davenport WG, King M, Schlesinger ME, et al. Extractive metallurgy of copper. Elsevier; 2002. Oxford (UK).
  • Jak E, Hidayat T, Shishin D, et al. Modelling of liquid phases and metal distributions in copper converters: transferring process fundamentals to plant practice. Min Proc Extractive Metall. 2019;128(1-2):74–107. doi:10.1080/25726641.2018.1506273.
  • Mills KC, Yuan L, Jones RT. Estimating the physical properties of slags. J South Afr Inst Min Metall. 2011;111(10):649–658. [cited 2021 Dec 25]. Available from: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532011001000002&lng=en&tlng=en.
  • Isaksson J, Vikström T, Lennartsson A, et al. Settling of copper phases in lime modified iron silicate slag. Metals (Basel). 2021;11(7):1098. doi:10.3390/met11071098.
  • Shi Y. Effect of B2O3 content on the viscosity of copper slag. J Alloys Compd. 2020;822:153478. doi:10.1016/j.jallcom.2019.153478.
  • Liang Z, Yi L, Huang Z, et al. Effect of silica on reduction behaviors of hematite-carbon composite compact at 1223–1373 K. ISIJ Inter. 2019;59(2):227–234. doi:10.2355/isijinternational.ISIJINT-2018-613.
  • Xiao W, Yao S, Zhou S, et al. Evolution of the structure and viscosity of copper slag during metallization-reduction. J Alloys Compd. 2022;903:163751. doi:10.1016/j.jallcom.2022.163751.
  • Volsky ES. Theory of metallurgical processes. Moskow: MIR Publishers; 1971.
  • Zhou S, Guo X, Tian B, et al. Investigation on Direct-to-Blister Smelting of Chalcocite via thermodynamics and experiment. Metals (Basel). 2021;11:19. doi:10.3390/met11010019.
  • Wang CG. Chapter 3 3 – nonferrous metal extraction and nonferrous slags. The Utilization of Slag in Civil Infrastructure Construction. 2016. doi:10.1016/B978-0-08-100381-7.00003-3
  • Gabasiane TS, Danha G, Mamvura TA, et al. Characterization of copper slag for beneficiation of iron and copper. Heliyon. 2021;7(4):e06757. doi:10.1016/j.heliyon.2021.e06757.
  • Fan Y, Zhang B, Song J, et al. An innovated application of reutilize copper smelter slag for cement-based electromagnetic interference composites. Sci Rep. 2018;8:16155. doi:10.1038/s41598-018-34680-5.
  • Sarfo P, Das A, Wyss G, et al. Recovery of metal values from copper slag and reuse of residual secondary slag. Waste Manage. 2017;70:272–281. doi:10.1016/j.wasman.2017.09.024.
  • Zhang H, Hu C, Gao W, et al. Recovery of iron from copper slag using coal-based direct reduction: reduction characteristics and kinetics. Minerals. 2020;10(11):973. doi:10.3390/min10110973.
  • Wang G, Zhang H, Wang J, et al. Improvement of carbothermic reduction of copper smelting slag and valuable constituents recovery. ISIJ Int. 2022;62(1):1–11. doi:10.2355/isijinternational.ISIJINT-2021-136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.