Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 2
147
Views
1
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

Effect of microwave hybrid heat treatment on the microstructure and hardness of 3D printed Inconel 718 superalloy

, , &
Pages 312-328 | Received 19 Dec 2022, Accepted 12 Mar 2023, Published online: 24 Apr 2023

References

  • Strößner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM). Adv Eng Mater. 2015;17:1099–1105. doi:10.1002/adem.201500158.
  • Bremen S, Meiners W, Diatlov A. Selective laser melting: a manufacturing technology for the future? Laser Tech J. 2012;9:33–38. doi:10.1002/latj.201290018.
  • Wang X, Gong X, Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc Inst Mech Eng Pt B: J Eng.Manuf. 2017;231:1890–1903. doi:10.1177/0954405415619883.
  • Kalinowski JM. Weldability of a nickel-based superalloy, 1994. https://ntrs.nasa.gov/citations/19950004780 (accessed February 27, 2023).
  • Taheri M, Razavi M, Kashani-Bozorg SF, et al. Relationship between solidification and liquation cracks in the joining of GTD-111 nickel-based superalloy by Nd: YAG pulsed-laser welding. J Mater Res Technol. 2021;15:5635–5649. doi:10.1016/j.jmrt.2021.11.007.
  • Calandri M, Yin S, Aldwell B, et al. Texture and microstructural features at different length scales in Inconel 718 produced by selective laser melting. Materials (Basel). 2019;12:1293. doi:10.3390/ma12081293.
  • Zhang D, Niu W, Cao X, et al. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater Sci Eng A. 2015;644:32–40. doi:10.1016/j.msea.2015.06.021.
  • Seede R, Mostafa A, Brailovski V, et al. Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: structure, texture, and phases. J Manuf Mater Process. 2018;2:30. doi:10.3390/jmmp2020030.
  • Tucho WM, Cuvillier P, Sjolyst-Kverneland A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater Sci Eng A. 2017;689:220–232. doi:10.1016/j.msea.2017.02.062.
  • Xu L, Chai Z, Peng B, et al. Effect of heat treatment on microstructures and mechanical properties of Inconel 718 additively manufactured using gradient laser power. Mater Sci Eng A. 2023: 144754. doi:10.1016/j.msea.2023.144754.
  • Xu M, Chen Y, Zhang T, et al. Effect of post-heat treatment on microstructure and mechanical properties of nickel-based superalloy fabricated by ultrasonic-assisted wire arc additive manufacturing. Mater Sci Eng A. 2023;863:144548. doi:10.1016/j.msea.2022.144548.
  • Kohale V, Jawade S, Kakandikar G. Investigation on mechanical behaviour of Inconel 718 manufactured through additive manufacturing. Int J Interact Des Manuf. 2023;IJIDeM:1–7.
  • Bhuvanesh Kumar M, Sathiya P, Senthil SM. A critical review of wire arc additive manufacturing of nickel-based alloys: principles, process parameters, microstructure, mechanical properties, heat treatment effects, and defects. J Braz Soc Mech Sci Eng. 2023;45:164. doi:10.1007/s40430-023-04077-1.
  • Singh S, Gupta D, Jain V, et al. Microwave processing of materials and applications in manufacturing industries: a review. Mater Manuf Process. 2015;30:1–29. doi:10.1080/10426914.2014.952028.
  • Chandrasekaran S, Ramanathan S, Basak T. Microwave material processing-a review. AIChE J. 2012;58:330–363. doi:10.1002/aic.12766.
  • Mishra RR, Sharma AK. Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing, composites part A. Appl Sci Manuf. 2016;81:78–97. doi:10.1016/j.compositesa.2015.10.035.
  • Chandrasekaran S, Basak T, Ramanathan S. Experimental and theoretical investigation on microwave melting of metals. J Mater Process Technol. 2011;211:482–487. doi:10.1016/j.jmatprotec.2010.11.001.
  • Mishra RR, Sharma AK. A review of research trends in microwave processing of metal-based materials and opportunities in microwave metal casting. Crit Rev Solid State Mater Sci. 2016;41:217–255. doi:10.1080/10408436.2016.1142421.
  • Bansal A, Sharma AK, Das S, et al. On microstructure and strength properties of microwave welded Inconel 718/stainless steel (SS-316L). Proc Inst Mech Eng L: J Mater Des Appl. 2016;230:939–948. doi:10.1177/1464420715589206.
  • Rajkumar K, Rajan P, Charles JMA. Microwave heat treatment on aluminium 6061 alloy-boron carbide composites. Procedia Eng. 2014;86:34–41. doi:10.1016/j.proeng.2014.11.008.
  • Zhang D, Feng Z, Wang C, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting. Mater Sci Eng A. 2018;724:357–367. doi:10.1016/j.msea.2018.03.073.
  • Deng D, Peng RL, Brodin H, et al. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments. Mater Sci Eng A. 2018;713:294–306. doi:10.1016/j.msea.2017.12.043.
  • Fayed EM, Shahriari D, Saadati M, et al. Influence of homogenization and solution treatments time on the microstructure and hardness of Inconel 718 fabricated by laser powder bed fusion process. Materials (Basel). 2020;13:2574. doi:10.3390/ma13112574.
  • Fayed EM, Saadati M, Shahriari D, et al. Optimization of the post-process heat treatment of inconel 718 superalloy fabricated by laser powder Bed fusion process. Metals (Basel). 2021;11:144. doi:10.3390/met11010144.
  • Quantax esprit software, bruker nano GmbH, Berlin, 2015.
  • Beausir B, Fundenberger J-J. Analysis tools for electron and X-ray diffraction. Metz: Université de Lorraine; 2017; www.atex-software.eu.
  • Murali J, Sankara Y, Sivaramudu G, et al. Comparison of mechanical, thermal and electrical properties with annealing temperature of DMLS materials Inconel-625 and Inconel-718 rapid prototyping. Int J Eng Trends Technol. 2016;42:137–141. doi:10.14445/22315381/IJETT-V42P227.
  • Cao Y, Bai P, Liu F, et al. Investigation on the precipitates of IN718 alloy fabricated by selective laser melting. Metals (Basel). 2019;9:1128. doi:10.3390/met9101128.
  • Sui S, Chen J, Fan E, et al. The influence of laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718. Mater Sci Eng A. 2017;695:6–13. doi:10.1016/j.msea.2017.03.098.
  • Connétable D, Ter-Ovanessian B, Andrieu É. Diffusion and segregation of niobium in FCC-nickel. J Phys: Condens Matter. 2012;24:0095010. doi:10.1088/0953-8984/24/9/095010.
  • Azadian S, Wei L-Y, Warren R. Delta phase precipitation in Inconel 718. Mater Charact. 2004;53:7–16. doi:10.1016/j.matchar.2004.07.004.
  • Pan X, Yu H, Tu G, et al. Segregation and diffusion behavior of niobium in a highly alloyed nickel-base superalloy. Trans Nonferrous Met Soc China. 2011;21:2402–2407. doi:10.1016/S1003-6326(11)61027-3.
  • Callister W D, Rethwisch D G. Materials science and engineering: An introduction. 9th ed. Wiley; Hoboken, New Jersey, USA; 2013.
  • Riemer A, Leuders S, Thöne M, et al. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng Fract Mech. 2014;120:15–25. doi:10.1016/j.engfracmech.2014.03.008.
  • Vrancken B, Thijs L, Kruth J-P, et al. Heat treatment of Ti6Al4V produced by selective laser melting. microstructure and mechanical properties. J Alloys Compounds. 2012;541:177–185. doi:10.1016/j.jallcom.2012.07.022.
  • Jiang R, Mostafaei A, Pauza J, et al. Varied heat treatments and properties of laser powder bed printed Inconel 718. Mater Sci Eng A. 2019;755:170–180. doi:10.1016/j.msea.2019.03.103.
  • Mostafa A, Picazo Rubio I, Brailovski V, et al. Structure, texture and phases in 3D printed IN718 alloy subjected to homogenization and HIP treatments. Metals (Basel). 2017;7:196. doi:10.3390/met7060196.
  • Zhang F, Levine LE, Allen AJ, et al. Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion. Acta Mater. 2018;152:200–214. doi:10.1016/j.actamat.2018.03.017.
  • Cao Y, Bai P, Liu F, et al. Effect of the solution temperature on the precipitates and grain evolution of IN718 fabricated by laser additive manufacturing. Materials (Basel). 2020;13:340. doi:10.3390/ma13020340.
  • Zhao Y, Guo Q, Ma Z, et al. Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties. Mater Sci Eng A. 2020;791:139735. doi:10.1016/j.msea.2020.139735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.