Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 2
72
Views
0
CrossRef citations to date
0
Altmetric
Metallurgical Processing

Biopolymer and its nanoparticles for surface coating enhancement of epoxy primer on zinc: electrochemical and surface studies

ORCID Icon &
Pages 616-628 | Received 18 Jan 2023, Accepted 22 Mar 2023, Published online: 10 Apr 2023

References

  • Abdallah M, Ahmed SA, Altass HM, et al. Competent inhibitor for the corrosion of zinc in hydrochloric acid based on 2, 6-bis- [ 1- (2- phenylhydrazono) ethyl ] pyridine. Chem Eng Commun [Internet]. 2018;206:137–148. doi:10.1080/00986445.2018.1477761.
  • Liu S, Sun H, Zhang N, et al. The corrosion performance of galvanized steel in closed rusty seawater. Int J Corros. 2013;2013:1–10.
  • Liu S, Sun H, Sun L, et al. Effects of pH and Cl - concentration on corrosion behavior of the galvanized steel in simulated rust layer solution. Corros Sci [Internet]. 2012;65:520–527. doi:10.1016/j.corsci.2012.08.056.
  • Zeng Y, Guan Z, Linsley CS, et al. Experimental study on novel biodegradable Zn–Fe–Si alloys. J Biomed Mater Res B Appl Biomater. 2022;110:2266–2275.
  • Pan S, Yuan J, Linsley C, et al. Corrosion behavior of nano-treated AA7075 alloy with TiC and TiB2 nanoparticles. Corros Sci [Internet]. 2022;206:110479. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0010938X22003973.
  • Guan Z, Linsley CS, Pan S, et al. Highly ductile Zn-2Fe-WC nanocomposite as biodegradable material. Metall Mater Trans A Phys Metall Mater Sci. 2020;51:4406–4413.
  • Guan Z, Linsley CS, Pan S, et al. Zn–Mg–WC nanocomposites for bioresorbable cardiovascular stents: microstructure, mechanical properties, fatigue, shelf life, and corrosion. ACS Biomater Sci Eng [Internet]. 2022;8:328–339. Available from: https://pubs.acs.org/doi/10.1021acsbiomaterials.1c01358.
  • Pais M, Rao P. Maltodextrin for corrosion mitigation of zinc in sulfamic acid : electrochemical, surface and spectroscopic studies. Int J Biol Macromol [Internet]. 2020;145:575–585. doi:10.1016/j.ijbiomac.2019.12.197.
  • Pais M, Rao P. Electrochemical, spectroscopic and theoretical studies for acid corrosion of zinc using glycogen. Chemi Pap. 2020;75:1387–1399.
  • Nawaz M, Naeem N, Kahraman R, et al. Effectiveness of epoxy coating modified with yttrium oxide loaded with imidazole on the corrosion protection of steel. Nanomaterials. 2021;11:2291–2307.
  • Galliano F, Landolt D. Evaluation of corrosion protection properties of additives for waterborne epoxy coatings on steel. Prog Org Coat. 2002;44:217–225.
  • Khodair ZT, Khadom AA, Jasim HA. Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: preparation, characterization and mathematical views. J Mater Res Technol [Internet]. 2019;8:424–435. doi:10.1016/j.jmrt.2018.03.003.
  • Zhou S, Wu Y, Zhao W, et al. Comparative corrosion resistance of graphene sheets with different structures in waterborne epoxy coatings. Colloids Surf A Physicochem Eng Asp [Internet]. 2018;556:273–283. doi:10.1016/j.colsurfa.2018.08.045.
  • Hsissou R, Benhiba F, Echihi S, et al. New epoxy composite polymers as a potential anticorrosive coatings for carbon steel in 3.5% NaCl solution: experimental and computational approaches. Chem Data Collect. 2021;31:100619–100623.
  • Hsissou R, Benhiba F, Echihi S, et al. Performance of curing epoxy resin as potential anticorrosive coating for carbon steel in 3.5% NaCl medium: combining experimental and computational approaches. Chem Phys Lett [Internet]. 2021;783:139081. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009261421007648.
  • Ramezanzadeh B, Attar MM. Studying the effects of micro and nano sized ZnO particles on the corrosion resistance and deterioration behavior of an epoxy-polyamide coating on hot-dip galvanized steel. Prog Org Coat [Internet]. 2011;71:314–328. doi:10.1016/j.porgcoat.2011.03.026.
  • Zhou X, Huang H, Zhu R, et al. Progress in organic coatings green modification of graphene oxide with phytic acid and its application in anticorrosive water-borne epoxy coatings. Prog Org Coat [Internet]. 2020;143:105601–105612. doi:10.1016/j.porgcoat.2020.105601.
  • Dagdag O, Hsissou R, El Harfi A, et al. Epoxy resins and their zinc composites as novel anti-corrosive materials for copper in 3% sodium chloride solution: experimental and computational studies. J Mol Liq. 2020;315:113757–113562.
  • Hsissou R, Azogagh M, Benhiba F, et al. Insight of development of two cured epoxy polymer composite coatings as highly protective efficiency for carbon steel in sodium chloride solution: DFT, RDF, FFV and MD approaches. J Mol Liq [Internet]. 2022;360:119406. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167732222009448.
  • Hsissou R, Benzidia B, Hajjaji N, et al. Elaboration, electrochemical investigation and morphological study of the coating behavior of a new polymeric polyepoxide architecture: crosslinked and hybrid decaglycidyl of phosphorus penta methylene dianiline on E24 carbon steel in 3.5% NaCl. Portugaliae Electrochimica Acta. 2019;37:179–191.
  • Hsissou R, Benzidia B, Hajjaji N, et al. Elaboration and electrochemical studies of the coating behavior of a new nanofunctional epoxy polymer on E24 steel in 3.5% NaCl. Portugaliae Electrochimica Acta. 2018;36:259–270.
  • Pehkonen SO, Yuan S. Self-Assembly ultrathin film coatings for the mitigation of corrosion: general considerations. Interface Sci Technol. 2018;23:13–21.
  • Ouarhim W, Zari N, Bouhfid R, et al. Mechanical performance of natural fibers-based thermosetting composites. Mech Phys Test Biocomposites Fibre-Reinf Compos Hybrid Compos. 2019:43–60.
  • Makhlouf ASH. Conventional and advanced coatings for industrial applications: an overview [Internet]. Nanocoatings and ultra-thin films. Woodhead Publishing Limited; 2011. doi:10.1533/9780857094902.2.159
  • Chhetri S, Samanta P, Murmu NC, et al. Anticorrosion properties of epoxy composite coating reinforced by molybdate-intercalated functionalized layered double hydroxide. J Compos Sci. 2019;13(1):11–18.
  • Awaja F, Zhang S, Tripathi M, et al. Cracks, microcracks and fracture in polymer structures: formation, detection, autonomic repair. Prog Mater Sci. 2016;83:536–573.
  • Korde JM, Sreekumar AV, Kandasubramanian B. Corrosion inhibition of 316L-type stainless steel under marine environments using epoxy/waste plastic soot coatings. SN Appl Sci [Internet]. 2020;2:1267–1280. doi:10.1007/s42452-020-3096-2.
  • Peng T, Xiao R, Rong Z, et al. Polymer nanocomposite-based coatings for corrosion protection. Chem Asian J. 2020;15:3915–3941.
  • Ramezanzadeh B, Attar MM, Farzam M. A study on the anticorrosion performance of the epoxy-polyamide nanocomposites containing ZnO nanoparticles. Prog Org Coat [Internet]. 2011;72:410–422. doi:10.1016/j.porgcoat.2011.05.014.
  • Zin IM, Howard RL, Badger SJ, et al. The mode of action of chromate inhibitor in epoxy primer on galvanized steel. Prog Org Coat. 1998;33:203–210.
  • Umoren SA, Eduok UM. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydr Polym [Internet]. 2016;140:314–341. doi:10.1016/j.carbpol.2015.12.038.
  • Xhanari K, Finsgar M, Knez Hrncic M, et al. Green corrosion inhibitors for aluminium and its alloys: a review. RSC Adv. 2017;7:27299–27330.
  • Mohan S, Oluwafemi OS, Kalarikkal N, et al. Biopolymers – application in nanoscience and nanotechnology. Recent Adv Biopolym. 2016:47–71.
  • Aly AA, El-Bisi MK. Grafting of polysaccharides: recent advances. biopolymer grafting: synthesis and properties [Internet]. Elsevier Inc.; 2018. p. 469–519. doi:10.1016/B978-0-323-48104-5.00011-1.
  • Ab’lah N, Wong TW. Starch as oral colon-specific nano- and microparticulate drug carriers. Polym Sci Innov Appl INC. 2020: 287–330. doi:10.1016/B978-0-12-816808-0.00009-3.
  • Farag AA. Applications of nanomaterials in corrosion protection coatings and inhibitors. Corros Rev. 2020;21(6):67–86.
  • Abdeen DH, el Hachach M, Koc M, et al. A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials. 2019;12:210–252.
  • Vollath D, Fischer FD, Holec D. Surface energy of nanoparticles - influence of particle size and structure. Beilstein J Nanotechnol. 2018;9:2265–2276.
  • Saji VS, Thomas J. Nanomaterials for corrosion control. Curr Sci. 2007;92:51–55.
  • Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization - A review. Sci Technol Adv Mater. 2008;9:43001–43012.
  • Wonnie Ma IA, Sh AKR, et al. Anticorrosion properties of epoxy-nanochitosan nanocomposite coating. Prog Org Coat [Internet]. 2017;113:74–81. doi:10.1016/j.porgcoat.2017.08.014.
  • Borsoi C, Scienza LC, Zattera AJ, et al. Effect of the incorporation of micro and nanocellulose particles on the anticorrosive properties of epoxy coatings applied on carbon steel. Mater Res. 2018;21(6):1–12.
  • Rahman OU, Shi S, Ding J, et al. Lignin nanoparticles: synthesis, characterization and corrosion protection performance. New J Chem. 2018;42:3415–3425.
  • Charitha BP, Rao P. Environmentally benign green inhibitor to attenuate acid corrosion of 6061Aluminum-15%(v) SiC(P) composite. J Ind Eng Chem [Internet]. 2018;58:357–368. doi:10.1016/j.jiec.2017.09.049.
  • Pineda-Gomez P, Acosta-Osorio AA, Coral DF, et al. Physicochemical characterization of traditional and commercial instant corn flours prepared with threshed white corn. CYTA – J Food. 2012;10:287–295.
  • Tong Y, Deng H, Kong Y, et al. Stability and structural characteristics of amylopectin nanoparticle-binding anthocyanins in Aronia melanocarpa. Food Chem. 2020;311:125687.
  • Lomeli-Ramirez MG, Barrios-Guzman AJ, Garcia-Enriquez S, et al. Chemical and mechanical evaluation of bio-composites based on thermoplastic starch and wood particles prepared by thermal compression. Bioresources. 2014;9:2960–2974.
  • Mouanga M, Bercot P. Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; part II: electrochemical analyses. Corros Sci [Internet]. 2010;52:3993–4000. doi:10.1016/j.corsci.2010.08.018.
  • Bentiss F, Traisnel M, Lagrenee M. The substituted 1,3,4-oxadiazoles: A new class of corrosion inhibitors of mild steel in acidic media. Corros Sci. 2000;42:127–146.
  • Zhang XG. Corrosion and electrochemistry of zinc. 1st ed. New York: Springer Science Business Media, Plenum Press; 1996. p. 125–153
  • Abd El Rehim SS, Abd El WS, Fouad EE, et al. Passivity and passivity breakdown of zinc anode in alkaline medium. Mater Corros. 1995;46:633–638.
  • Li WH, He Q, Zhang ST, et al. Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium. J Appl Electrochem. 2008;38:289–295.
  • Cao F, Wei J, Dong J, et al. The corrosion inhibition effect of phytic acid on 20SiMn steel in saturated Ca(OH)2 solution with 1 mol L−1 NaCl. Corros Eng Sci Technol [Internet]. 2018;53:283–292. doi:10.1080/1478422X.2018.1459063.
  • Zarrok H, Zarrouk A, Salghi R, et al. Study of a cysteine derivative as a corrosion inhibitor for carbon steel in phosphoric acid solution. Res Chem Intermed. 2014;40:801–815.
  • Qi J, Hashimoto T, Thompson GE, et al. Influence of water immersion post-treatment parameters on trivalent chromium conversion coatings formed on AA2024-T351 alloy. J Electrochem Soc. 2016;163:C131–C138.
  • Burduhos-Nergis DP, Vizureanu P, Sandu AV, et al. Evaluation of the corrosion resistance of phosphate coatings deposited on the surface of the carbon steel used for carabiners manufacturing. Appl Sci. 2020;10:2753–2767.
  • Bagherzadeh MR, Ghasemi M, Mahdavi F, et al. Progress in organic coatings investigation on anticorrosion performance of nano and micro polyaniline in new water-based epoxy coating. Prog Org Coat. 2011;72:348–352.
  • Wang N, Wu YH, Cheng KQ, et al. Investigation on anticorrosion performance of polyaniline - mesoporous MCM - 41 composites in new water - based epoxy coating. Mater Corros. 2014;65:968–976.
  • Liu X, Hou P, Zhao X, et al. The polyaniline-modified TiO 2 composites in water-based epoxy coating for corrosion protection of Q235 steel. J Coat Technol Res. 2019;16:71–80.
  • Chen F, Liu P. Conducting polyaniline nanoparticles and their dispersion for waterborne corrosion protection coatings. Appl Mater Interfaces. 2011;3:2694–2702.
  • Wonnie Ma IA, Sh AKR, et al. Anticorrosion properties of epoxy/nanocellulose nanocomposite coating. Bioresources. 2017;12:2912–2929.
  • Pham GV, Trinh AT, To TXH, et al. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel. Adv Nat Sci: Nanosci Nanotechnol. 2014;5:2–9.
  • Pourhashem S, Rashidi A, Vaezi MR, et al. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide. Surf Coat Technol. 2017;317:1–9.
  • Pais M, Rao P. Enhanced anticorrosion performance of epoxy primer coating on zinc in 3.5% NaCl by micro and nano particulates of biopolymers. J Adhes Sci Technol. 2022. doi:10.1080/01694243.2022.2079352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.