Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 2
214
Views
0
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

Evaluation of the impact of Mn and Al on the microstructure of Fe–Co–Ni–Cr based high entropy alloys

ORCID Icon, , &
Pages 329-340 | Received 02 Nov 2022, Accepted 03 Apr 2023, Published online: 09 May 2023

References

  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi:10.1002/adem.200300567.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218. doi:10.1016/j.msea.2003.10.257.
  • Kumar A, Gupta M. An insight into evolution of light weight high entropy alloys: a review. Metals (Basel. 2016;6(9):199. doi:10.3390/met6090199.
  • He Q, Yang Y. On lattice distortion in high entropy alloys. Front Mater. 2018;5. doi:10.3389/fmats.2018.00042.
  • Miracle D, Miller J, Senkov O, et al. Exploration and development of high entropy alloys for structural applications. Entropy. 2014;16(1):494–525. doi:10.3390/e16010494.
  • Tsai K-Y, Tsai M-H, Yeh J-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61(13):4887–4897. doi:10.1016/j.actamat.2013.04.058.
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4(8):515–534. doi:10.1038/s41578-019-0121-4.
  • Ilinich-Shaw M, Huang X, Zanganeh K. Oxidation performance of Fe-Ni-Co-Cr-Mn high entropy alloy and its Al containing variants in supercritical CO2. In Turbomachinery Technical Conference and Exposition. 2023.
  • Kai W, Li CC, Cheng FP, et al. The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950°C in various oxygen-containing atmospheres. Corros Sci. 2016;108:209–214. doi:10.1016/j.corsci.2016.03.020.
  • Okamoto NL, Fujimoto S, Kambara Y, et al. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci Rep. 2016;6(1):35863. doi:10.1038/srep35863.
  • Wang B, Fu A, Huang X, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression. J Mater Eng Perform. 2016;25(7):2985–2992. doi:10.1007/s11665-016-2105-5.
  • Yim D, Kim W, Praveen S, et al. Shock wave compaction and sintering of mechanically alloyed CoCrFeMnNi high-entropy alloy powders. Mater Sci Eng A. 2017;708:291–300. doi:10.1016/j.msea.2017.09.132.
  • Xu Z, Kim W, Praveen S, et al. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting. Addit. Manuf. 2019;28:766–771. doi:10.1016/j.addma.2019.06.012.
  • Melia MA, Carroll JD, Whetten SR, et al. Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy. Addit Manuf. 2019;29:100833. doi:10.1016/j.addma.2019.100833.
  • Xiao Y, Kozak R, Haché MJR, et al. Micro-compression studies of face-centered cubic and body-centered cubic high-entropy alloys: size-dependent strength, strain rate sensitivity, and activation volumes. Mater Sci Eng A. 2020;790:139429. doi:10.1016/j.msea.2020.139429.
  • Laplanche G, Bonneville J, Varvenne C, et al. Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2018;143:257–264. doi:10.1016/j.actamat.2017.10.014.
  • Seol JB, Bae JW, Li Z, et al. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 2018;151:366–376. doi:10.1016/j.actamat.2018.04.004.
  • Zhu C, Lu ZP, Nieh TG. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 2013;61(8):2993–3001. doi:10.1016/j.actamat.2013.01.059.
  • Pickering EJ, Muñoz-Moreno R, Stone HJ, et al. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 2016;113:106–109. doi:10.1016/j.scriptamat.2015.10.025.
  • Tsai MT, Huang JC, Lin PH, et al. Creep of face-centered-cubic {111} and {100} grains in FeCoNiCrMn and FeCoNiCrMn Al alloys: orientation and solid solution effects. Intermetallics. 2018;103:88–96. doi:10.1016/j.intermet.2018.10.006.
  • He JY, Liu WH, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014;62:105–113. doi:10.1016/j.actamat.2013.09.037.
  • Hong SI, Moon J, Hong SK, et al. Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy. Mater Sci Eng A. 2017;682:569–576. doi:10.1016/j.msea.2016.11.078.
  • Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61(15):5743–5755. doi:10.1016/j.actamat.2013.06.018.
  • Wu SW, Wang G, Yi J, et al. Strong grain-size effect on deformation twinning of an Al 0.1 CoCrFeNi high-entropy alloy. Mater Res Lett. 2017;5(4):276–283. doi:10.1080/21663831.2016.1257514.
  • Lin L, Xian X, Zhong Z, et al. Microstructure stability and Its influence on the mechanical properties of CrMnFeCoNiAl0.25 high entropy alloy. Met Mater Int. 2020;26(8):1192–1199. doi:10.1007/s12540-019-00542-6.
  • Lin L, Xian X, Zhong Z, et al. A multi-phase CrMnFeCoNiAl0.75 high-entropy alloy with high strength at intermediate temperature. Intermetallics. 2020;120:106744. doi:10.1016/j.intermet.2020.106744.
  • Shiratori H, Fujieda T, Yamanaka K, et al. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting. Mater Sci Eng A. 2016;656:39–46. doi:10.1016/j.msea.2016.01.019.
  • Sistla HR, Newkirk JW, Frank Liou F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of Al FeCoCrNi2− (x =  0.3, 1) high entropy alloys. Mater Des. 2015;81:113–121. doi:10.1016/j.matdes.2015.05.027.
  • Komarasamy M, Kumar N, Mishra RS, et al. Anomalies in the deformation mechanism and kinetics of coarse-grained high entropy alloy. Mater Sci Eng A. 2016;654:256–263. doi:10.1016/j.msea.2015.12.063.
  • Butler TM, Alfano JP, Martens RL, et al. High-Temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys. JOM. 2015;67(1):246–259. doi:10.1007/s11837-014-1185-7.
  • Butler TM, Weaver ML. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J Alloys Compd. 2016;674:229–244. doi:10.1016/j.jallcom.2016.02.257.
  • Joseph J, Jarvis T, Wu X, et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al x CoCrFeNi high entropy alloys. Mater Sci Eng A. 2015;633:184–193. doi:10.1016/j.msea.2015.02.072.
  • Callister WD and Rethwisch DG. Fundamentals of materials science and engineering, an integrated approach, 3rd ed. Wiley, 2008.
  • Wang S, Chen S, Jia Y, et al. FCC-L12 ordering transformation in equimolar FeCoNiV multi-principal element alloy. Mater Des. 2019;168:107648. doi:10.1016/j.matdes.2019.107648.
  • Laurent-Brocq M, Akhatova A, Perrière L, et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Mater. 2015;88:355–365. doi:10.1016/j.actamat.2015.01.068.
  • Stryzhyboroda O, Witusiewicz VT, Gein S, et al. Phase equilibria in the Al-Co-Cr-Fe-Ni high entropy alloy system: thermodynamic description and experimental study. Front Mater. 2020;7. doi:10.3389/fmats.2020.00270.
  • Antonov S, Detrois M, Tin S. Design of novel precipitate-strengthened Al-Co-Cr-Fe-Nb-Ni high-entropy superalloys. Metall Mater Trans A. 2018;49(1):305–320. doi:10.1007/s11661-017-4399-9.
  • Munitz A, Edry I, Brosh E, et al. Liquid phase separation in AlCrFeNiMo0.3 high-entropy alloy. Intermetallics. 2019;112:106517. doi:10.1016/j.intermet.2019.106517.
  • Wang J, Zhang X. Twinning effects on strength and plasticity of metallic materials. MRS Bull. 2016;41(4):274–281. doi:10.1557/mrs.2016.67.
  • Steinmetz DR, Jäpel T, Wietbrock B, et al. Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments. Acta Mater. 2013;61(2):494–510. doi:10.1016/j.actamat.2012.09.064.
  • Slone CE, Chakraborty S, Miao J, et al. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy. Acta Mater. 2018;158:38–52. doi:10.1016/j.actamat.2018.07.028.
  • Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015;94:124–133. doi:10.1016/j.actamat.2015.04.014.
  • Xian X, Zhong Z-H, Lin L-J, et al. Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al. Rare Met. 2018. doi:10.1007/s12598-018-1161-4.
  • Jeyaraam R, Subramanya Sarma V, Vedantam S. Phase field modelling of annealing twin formation, evolution and interactions during grain growth. Comput Mater Sci. 2020;182:109787. doi:10.1016/j.commatsci.2020.109787.
  • Wang W-R, Wang W-L, Wang S-C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012;26:44–51. doi:10.1016/j.intermet.2012.03.005.
  • Liu SF, Wu Y, Wang HT, et al. Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics. 2018;93:269–273. doi:10.1016/j.intermet.2017.10.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.