Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 2
101
Views
0
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

Correlation of microstructure, hardness, and electrical conductivity of hypereutectic Al-Si/B4C composites manufactured by hot pressing technique and subjected to hot extrusion

Corrélation de la microstructure, de la dureté et de la conductivité électrique des composites hypereutectiques Al-Si/B4C fabriqués par la technique de pressage à chaud et soumis à une extrusion à chaud

ORCID Icon & ORCID Icon
Pages 350-359 | Received 01 Feb 2023, Accepted 29 Apr 2023, Published online: 15 May 2023

References

  • Dash T, Rout D, Palei BB. Graphene decorated aluminum nano composite with improved micro hardness and electrical conductivity. Mater Today-Proc. 2021;46(20):11061–11063.
  • Shorowordi KM, Laoui T, Haseeb ASMA, et al. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J Mater Process. Technol. 2003;142(3):738–743.
  • Shabani MO, Mazahery A. Optimization of process conditions in casting aluminum matrix composites via interconnection of artificial neurons and progressive solutions. Ceram Int. 2012;38(6):4541–4547.
  • Shabani MO, Mazahery A. The ANN application in FEM modeling of mechanical properties of Al–Si alloy. Appl Math Model. 2011;35(12):5707–5713.
  • Oh SY, Cornie JA, Russell KC. Wetting of ceramic particulates with liquid aluminum alloys: Part I. Experimental techniques. Metal Trans A. 1989;20:527–532.
  • Jasim SA. Improving of some mechanical properties: microstructure and electrical conductivity of pure aluminum by adding zinc. J Babylon Univ Eng Sci. 2017;25(1):119–128.
  • Polat S, Sun Y, Çevik E, et al. Evaluation of thermal conductivity of GNPs-doped B4C/Al-Si composites in terms of interface interaction and electron mobility. Diam Relat Mater. 2019;98:107457.
  • Ozer M, Aydogan SI, Ozer A, et al. Influence of spark plasma sintering and conventional sintering on microstructure and mechanical properties of hypereutectic Al-Si alloy and hypereutectic Al-Si/B4C composites. Kovove Mater. 2022;60(3):171–179.
  • Palei BB, Dash T, Biswal SK. Successful synthesis of graphene-aluminum composite with improved microhardness. Int J Eng Adv Technol. 2020;9(3):2218–2221.
  • Ozer A. The microstructures and mechanical properties of Al-15Si-2.5Cu-0.5Mg/(wt%)B4C composites produced through hot pressing technique and subjected to hot extrusion. Mater Chem Phys. 2016;183:288–296.
  • Tokutomi J, Uemura T, Sugiyama S, et al. Hot extrusion to manufacture the metal matrix composite of carbon nanotube and aluminum with excellent electrical conductivities and mechanical properties. CIRP Ann. 2015;64(1):257–260.
  • Mulazimoglu MH, Drew RA, Gruzleski JE. The electrical conductivity of cast Al−Si alloys in the range 2 to 12.6 wt pct silicon. Metall Mater Trans A. 1989;20:383–389.
  • Chen JK, Hung HY, Wang CF, et al. Thermal and electrical conductivity in Al–Si/Cu/Fe/Mg binary and ternary Al alloys. J Mater Sci. 2015;50:5630–5639.
  • Fadayomi O, Clark R, Thole V, et al. Investigation of Al-Zn-Zr and Al-Zn-Ni alloys for high electrical conductivity and strength application. Mat Sci Eng A-Struct. 2019;743:785–797.
  • Electrical properties of materials and their measurement at low temperatures. National Bureau of Standard Technical Note No. 1053:1982.
  • Pakiela Z, Ludwichowska K, Ferenc J, et al. Mechanical properties and electrical conductivity of Al 6101 and 6201 alloys processed by hydro-extrusion. IOP Conf. Ser-Mat Sci Eng. 2014;63:012120.
  • Allen PB, Butler WH. Electrical conduction in metals. Phys Today. 1978;31(12):44–50.
  • Yamashita M. Resistivity correction factor for the four-probe method. J Phys E Sci Instrum. 1987;20(12):1454–1456.
  • Su SS, Chang IT, Kuo WC. Effects of processing conditions on the sintering response of hypereutectic Al-Si-Cu-Mg P/M alloys. Mater Chem Phys. 2013;139(2-3):775–782.
  • Ozer M, Aydogan SI, Cinici H, et al. Effects of sintering techniques and parameters on microstructure and mechanical properties of Al-15Si-2,5Cu-0.5Mg compacts and Al-15Si-2,5Cu-0.5Mg/B4C composites. Mater Today Commun. 2022;30:103192.
  • Heard DW, Donaldson DW, Bishop DP. Metallurgical assessment of a hypereutectic aluminum–silicon P/M alloy. J Mater Process Tech. 2009;209(18-19):5902–5911.
  • Arribas I, Martin JM, Castro F. The initial stage of liquid phase sintering for an Al–14Si–2.5Cu–0.5Mg (wt%) P/M alloy. Mat Sci Eng A-Struct. 2010;527(16-17):3949–3966.
  • Manonukul A, Salee A. Relationship between atmospheric dew point and sinterability of Al-Si based alloy. J Mater Sci Technol. 2013;29(1):70–76.
  • Rudinsky S, Aguirre JM, Sweet G, et al. Spark plasma sintering of an Al-based powder blend. Mat Sci Eng A-Struct. 2015;621:18–27.
  • Hang CJ, Wang CQ, Mayer M, et al. Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging. Microelectron Reliab. 2008;48:416424.
  • Wanjara P, Brochu M. Characterization of electron beam welded AA2024. Vacuum. 2010;85(2):268–282.
  • Prasad VV, Bhat BV, Ramakrishnan P, et al. Clustering probability maps for private metal matrix composites. Scripta Mater. 2000;43(9):835–840.
  • Slipenyuk A, Kuprin V, Milman Y, et al. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater. 2006;54(1):157–166.
  • Slipenyuk A, Kuprin V, Milman Y, et al. The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCp MMC. Mat Sci Eng A-Struct. 2004;381(1-2):165–170.
  • Alizadeh A, Nassaj ET, Hajizamani M. Hot extrusion process effect on mechanical behavior of stir cast Al based composites reinforced with mechanically milled B4C nanoparticles. J Mater Sci Technol. 2011;27(12):1113–1119.
  • Lee HS, Yeo JS, Hong SH, et al. The fabrication process and mechanical properties of SiCp/Al–Si metal matrix composites for automobile air-conditioner compressor pistons. J Mater Process Tech. 2001;113(1-3):202–208.
  • Deng KK, Wu K, Wu YW, et al. Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites. J Alloy Compd. 2010;504(2):542–547.
  • Wu YW, Wu K, Deng KK, et al. Effect of extrusion temperature on microstructures and damping capacities of Grp/AZ91 composite. J Alloy Compd. 2010;506(2):688–692.
  • Pal H, Sharma V. Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver-palladium alloy composites. Int J Min Met Mater. 2014;21:1132–1140.
  • Isfahani MJ, Payami F, Asadabad MA, et al. Investigation of the effect of boron carbide nanoparticles on the structural, electrical, and mechanical properties of Al-B4C nanocomposites. J Alloy Compd. 2019;797:1348–1358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.