Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 2
102
Views
0
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

Machinability of extruded and multi-directionally hot forged eco-friendly brass alloys

, &
Pages 414-425 | Received 17 Mar 2023, Accepted 03 May 2023, Published online: 22 May 2023

References

  • Alagarsamy SV, Ravichandran M, Meignanamoorthy M, et al. Prediction of surface roughness and tool wear in milling process on brass (C26130) alloy by Taguchi technique. Mater Today. 2020;21(1):189–193. doi:10.1016/j.matpr.2019.04.219.
  • Szyszkowski A. Les principaux laitons au plomb et leurs usages, Centre Belge d’ Information du Cuivre, Publication no. 53/V, Symposium “Les laitons”, 1973 (in French).
  • Ragon R, Stucy M. Influence du plomb sur l’usinabilite´ des alliages cuivreux pour robinetterie. Fonderie—Fondeur d’ Aujourd’ hui. 1997;170:8–15.
  • Saigal A, Rohatgi P. Machinability of cast lead free yellow brass containing graphite particles. AFS Trans. 1996;104:225–228.
  • Whiting L, Newcombe P, Sahoo M. Casting characteristics of red brass containing bismuth and selenium. AFS Trans. 1995;103:683–691.
  • Twarog D. Modified red brass with bismuth and selenium: research results. AFS Trans. 1995;103:451–461.
  • Arnaud D. Composition and characteristics of copper alloys, 1989;12–16.
  • French A. Improved free-machining leaded brass. J Inst Met. 1973;101:125–137.
  • Le TP-J, Arnaud D. Influence des impuret´ es sur les proprietes des laitons. Fonderie. 1959;162:323–325.
  • https://www.copper.org/applications/rodbar/pdf/A7038-brass-for-european-potable-water-applications.pdf.
  • https://rohs.exemptions.oeko.info/fileadmin/user_upload/RoHS_Pack_9/Exemption_6_c_/Exemption_6c__2015-10-mitsubishi-shindoh-rohs.pdf.
  • Williams JE, Smart EF, Milner DR. Metallurgy of machining 2. cutting of single-phase, 2-phase and some free machining alloys. Metallurgia. 1970;81(484):51–59.
  • Stoddart CTH, Lea C, Dench WA, et al. Relationship between lead content of Cu–40Zn,: machinability, and svvarf surface composition determined by Auger electron spectroscopy. Met Technol. 1979;6(1):176–184. doi:10.1179/030716979803276435.
  • Gane N. The effect of lead on the friction and machining of brass. Philos Mag A. 1980;43(3):545–566. doi:10.1080/01418618108240394.
  • Wolfenden A, Wright PK. Role of lead in free-machining brass. Met. Technol. 1979;6(1):297–302. doi:10.1179/030716979803276697.
  • Bjerke A, Hrechuk A, Lenrick F, et al. Thermodynamic modeling framework for prediction of tool wear and tool protection phenomena in machining. Wear. 2021;15:484–485. doi:10.1016/j.wear.2021.203991.
  • Samandi M, Wise M. Machinability of copper based alloys. J INCRA Rep. 1989;1:110–115.
  • Trent EM. Metal cutting and the tribology of seizure: III temperatures in metal cutting. Wear. 1988;128(1):65–81. doi:10.1016/0043-1648(88)90253-0.
  • Imai H, Kosaka Y, Kojima A, et al. Characteristics and machinability of lead-free P/M Cu60–Zn40 brass alloys dispersed with graphite. Powder Technol. 2010;198(3):417–421. doi: 10.1016/j.powtec.2009.12.010.
  • Schultheiss F, Johansson D, Linde M, et al. Machinability of CuZn21Si3P brass. Mater Sci Technol. 2016;32(17):1744–1750. doi: 10.1080/02670836.2016.1189199.
  • Toulfatzis AI, Pantazopoulos GA, David CN, et al. Machinability of eco-friendly lead-free brass alloys: cutting-force and surface-roughness optimization. Metals (Basel). 2018;8(4):250. doi: 10.3390/met8040250.
  • Johansson J, Persson H, Ståhl J-E, et al. Machinability evaluation of low-lead brass alloys. Proc Manuf. 2019;38:1723–1730. doi: 10.1016/j.promfg.2020.01.102.
  • Aytekin K. Characterization of machinability in lead-free brass alloys, Degree Project In Materials Design And Engineering, Second Cycle, 30 Credits Stockholm, Sweden, 2018.
  • Kato H, Nakata S, Ikenaga N, et al. Improvement of chip evacuation in drilling of lead-free brass using micro drill. Int J Automation Technol. 2014;8(6):874–879. doi: 10.20965/ijat.2014.p0874.
  • Zoghipour N, Tascioglu E, Atay G, et al. Machining-induced surface integrity of holes drilled in lead-free brass alloy. Proc CIRP. 2020;87:148–152. doi: 10.1016/j.procir.2020.02.102.
  • Zoghipour N, Atay G, Kaynak Y. Modeling and optimization of drilling operation of lead-free brass alloys considering various cutting tool geometries and copper content. Proc CIRP. 2021;102:246–251. doi: 10.1016/j.procir.2021.09.042.
  • Padmavardhani D, Prasad YVRK. Characterization of hot deformation behavior of brasses using processing maps: part II. α brass and β brass. Metall Trans A. 1991;22A:2993–3001.
  • Griffiths P, Hammond C. Superplasticity in large grained materialsSuperplasticite dans les materiaux a gros grainsSuperplastizität in materialien mit groβer korngröβe. Acta Metall. 1972;20:935–945.
  • Callister WD, Rethwisch JRDG. Materials science and engineering, Wiley Binder Version ISBN: 978-1-118-47770-0.
  • Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: A review. Int J Mach Tools Manuf. 2011;51(3):250–280. doi: 10.1016/j.ijmachtools.2010.11.003.
  • Ståhl J-E. Metal cutting theories and models, Seco Tools, Diverse Production Materials Engineering, 2012.
  • Johansson J, Bushlya V, Obitz C, et al. Influence of subsurface deformation induced by machining on stress corrosion cracking in lead free brass. Int J Adv Manuf Technol. 2022;122:3171–3181.
  • Pantazopoulos G, Vazdirvanidis A. Characterization of microstructural aspects of machinable α-β phase brass. Microsc Anal. 2008;22:13–16.
  • Tascioglu E, Zoghipour N, Sharif S, et al. Machining-induced surface integrity in brass alloys. Proc CIRP. 2022;108:654–659. doi: 10.1016/j.procir.2022.04.078.
  • https://sarbak.com.tr/en/documents/alloys.
  • Jaspers SPFC, Dautzenberg JH. Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation. J Mater Process Technol. 2002;121(1):123–135. doi: 10.1016/s0924-0136(01)01227-4.
  • Hofmann U, El-Magd E. Behaviour of Cu–Zn alloys in high-speed shear tests and in chip formation processes. Mater Sci Eng A. 2005;395(1–2):129–140. doi: 10.1016/j.msea.2004.12.030.
  • Dhanke VD, Phafat NG, Deshmukh RR. Optimization of process parameters in drilling of AISI 1015 steel for exit burr using RSM and Taguchi. Int J Mech Eng Technol (IJMET). 2013;4(4):327–337.
  • Ko SL, Lee JK. Analysis of burr formation in drilling with a new-concept drill. J Mater Process Technol. 2001;113(1–3):392–398. doi: 10.1016/S0924-0136(01)00717-8.
  • Gillespie LK, Blotter PT. The formation and properties of machining burrs. J Eng Ind. 1976;98(1):66–74.
  • Toulfatzis AI, Pantazopoulos GA, Paipetis AS. Fracture behavior and characterization of lead-free brass alloys for machining applications. J Mater Eng Perform. 2014;23:3193–3206.
  • Wang CH. Introduction to fracture mechanics. Melbourne, Vic.: DSTO Aeronautical and Maritime Research Laboratory; 1996.
  • Şar E. Tensile opening mode fracture toughness measurements and size effect investigations with Brazilian disc type rock specimens. Middle East Technical University; 2020.
  • Doyle ED. Mechanisms of plastic instability in the machining of metals, 1974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.