Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 2
101
Views
0
CrossRef citations to date
0
Altmetric
Extractive Pyrometallurgy - Nonferrous

Spectroscopic characterisation of feedstock for copper smelters by machine-learning

, , & ORCID Icon
Pages 576-585 | Received 21 Feb 2023, Accepted 07 May 2023, Published online: 23 May 2023

References

  • Key to Metals AG: The Copper Flash CC Smelting Process. Total Materia, 2016. https://www.totalmateria.com/ (accessed 2023 January 29, 2023).
  • NIST Chemistry WebBook: NIST Standard Reference Database Number 69. https://webbook.nist.gov/chemistry/ (accessed 27 January, 2023).
  • Stokreef A. Measuring the effect of concentrate mineralogy on flash furnace smelting using drop tower testing and a novel optical probe. Queen's University; 2018.
  • World Copper Factbook 2022. International Copper Study Group, 2022. https://icsg.org/copper-factbook/ (accessed 2023 January 29, 2023).
  • Taskinen P, Jokilaakso A. Reaction sequences in flash smelting and converting furnaces: An In-depth view. Metall Mater Trans B. 2021;52(5):3524–3542.
  • Evans EH. Atomic mass spectrometry - inductively coupled plasma. In: Worsfold P, Townshend A, Poole C, editor. Encyclopedia of analytical science (Second Edition). Elsevier; 2005. p. 229–237.
  • Olesik J. ICP-OES capabilities, developments, limitations, and Any potential challengers? Spectroscopy. 2020;35(6):18–21.
  • Ottesen DK, Baxter LL, Radziemski LJ, et al. Laser spark emission spectroscopy for in-situ, real-time monitoring of pulverized coal particle composition. Energy Fuels. 1991;5(2):304–312.
  • Khajehzadeh N, Haavisto O, Koresaar L. On-stream and quantitative mineral identification of tailing slurries using LIBS technique. Miner Eng. 2016;98:101–109.
  • Myakalwar AK, Sandoval C, Sepúlveda B, et al. Laser induced breakdown spectroscopy for monitoring the molten phase desulfurization process of blister copper. Anal Chim Acta. 2021;1178:338805.
  • Song W, Hou Z, Gu W, et al. Industrial at-line analysis of coal properties using laser-induced breakdown spectroscopy combined with machine learning. Fuel. 2021;306:121667.
  • MineSense. A Shovelsense Case Study. 2022. https://minesense.com/shovel-sense/ (accessed 2023 January 23, 2023).
  • Weiss M. Xrf–New applications in sensor-based-sorting using X-ray fluorescence. J Waste Manag. 2012;3:139–148.
  • Arias L, Torres S, Toro C, et al. Flash smelting copper concentrates spectral emission measurements. Sensors. 2018;18(7.
  • Arias L, Balladares E, Parra R, et al. Sensors and process control in copper smelters: A review of current systems and some opportunities. Minerals. 2021;11(1):1.
  • Yañez J, Torres S, Sbarbaro D, et al. Analytical instrumentation for copper pyrometallurgy: challenges and opportunities. IFAC-PapersOnLine. 2018;51(21):251–256.
  • Campion JJ. Boltzmann distribution and the detection limits of flame emission. Anal Chem. 1974;46(8):1145–1146.
  • Stokreef A, Barnes JA, Loock H-P, et al. Fiber optic probe for process control in copper smelters. In Applied Industrial Optics 2019, Washington, DC, 2019/07/08, 2019; Optica Publishing Group: p T3A.1.
  • Aldous KM, Bailey BW, Rankin JM. Burning velocity of the premixed nitrous-oxide/acetylene flame and its influence on burner design. Anal Chem. 1972;44(1):191–194.
  • D'Silva AP, Kniseley RN, Fassel VA. The premixed, fuel-rich, oxyacetylene flame in flame emission spectrometry. Anal Chem. 1964;36:1287–1289.
  • Holcombe JA, Rettberg TM. Atomic absorption, atomic fluorescence, and flame emission spectrometry. Anal Chem. 1986;58(5):124–144.
  • Li P, Hu J, Zhang M, et al. Microdischarge in flame as a source-in-source for boosted excitation of optical emission of chromium. Anal Chem. 2022;94(21):7683–7691.
  • Abiodun OI, Jantan A, Omolara AE, et al. State-of-the-art in artificial neural network applications: a survey. Heliyon. 2018;4(11):e00938.
  • Guselnikova O, Trelin A, Skvortsova A, et al. Label-free surface-enhanced Raman spectroscopy with artificial neural network technique for recognition photoinduced DNA damage. Biosens Bioelectron. 2019;145:111718.
  • Li L-N, Liu X-F, Yang F, et al. A review of artificial neural network based chemometrics applied in laser-induced breakdown spectroscopy analysis. Spectrochim Acta B: At Spectrosc. 2021;180:106183.
  • Pyo J, Hong SM, Kwon YS, et al. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci Total Environ. 2020;741:140162.
  • Sutter JM, Jurs PC. Neural network classification and quantification of organic vapors based on fluorescence data from a fiber-optic sensor array. Anal Chem. 1997;69(5):856–862.
  • Lei B, Bissonnette JR, Hogan ÚE, et al. Customizable machine-learning models for rapid microplastic identification using Raman microscopy. Anal Chem. 2022;94(49):17011–17019.
  • Liu S, Borovykh A, Grzelak LA, et al. A monotonic relationship between the variability of the infectious period and final size in pairwise epidemic modelling. J Math Ind. 2019;9(1):1–28.
  • Zhou H, Sun G, Fu S, et al. A big data mining approach of PSO-based BP neural network for financial risk management with IoT. IEEE Access. 2019;7:154035–154043.
  • Kleynhans T, Patterson CMS, Dooley KA, et al. An alternative approach to mapping pigments in paintings with hyperspectral reflectance image cubes using artificial intelligence. Herit Sci. 2020;8(1):1–16.
  • Wang J, Liao X, Zheng P, et al. Classification of Chinese herbal medicine by laser-induced breakdown spectroscopy with principal component analysis and artificial neural network. Anal Lett. 2018;51(4):575–586.
  • AbuSharekh EK, Abu-Naser SS. Diagnosis of hepatitis virus using artificial neural network. Int J Acad Res. 2018.
  • Toraman S, Alakus TB, Turkoglu I. Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks. Chaos Solit Fractals. 2020;140:110122.
  • Schwalbe N, Wahl B. Artificial intelligence and the future of global health. Lancet. 2020;395(10236):1579–1586.
  • Himmelblau DM. Applications of artificial neural networks in chemical engineering. Korean J Chem Eng. 2000;17(4):373–392.
  • Jones HA. A temperature scale for tungsten. Phys Rev. 1926;28(1):202–207.
  • Gordon, S.; McBride, B. J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. 1996.
  • Glassman I, Yetter RA. Combustion. US: Elsevier; 2015. doi:10.1016/C2011-0-05402-9.
  • Huber KP, Herzberg G. Constants of diatomic molecules. In: Linstrom PJ, Mallard WG, editor. NIST Chemistry WebBook. National Institute of Standards and Technology; 2003.
  • Western CM. PGOPHER: A program for simulating rotational, vibrational and electronic spectra. J Quant Spectrosc Radiat Transf. 2017;186:221–242.
  • West JB, Broida HP. Chemiluminescence and photoluminescence of diatomic iron oxide. J Chem Phys. 1975;62(7):2566–2574.
  • Kramida A, Ralchenko Y, Reader J. Team, a. N. A. NIST Atomic Spectra Database (version 5.10), [Online]. Available: http://physics.nist.gov/asd; National Institute of Standards and Technology, Gaithersburg, MD, 2022. doi:10.18434/T4W30F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.