Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 2
100
Views
0
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

The microstructure, mechanical behaviour, and dissolvability of novel Al-Cu-Zn-Mg-based alloys

, , &
Pages 440-459 | Received 18 Jan 2023, Accepted 17 May 2023, Published online: 08 Jun 2023

References

  • International Energy Agency. World energy outlook 2019. Paris: International Energy Agency Website: www.iea.org; 2019.
  • Liu L, Yu S, Liu E, et al. Investigations on the microstructure and degradation behavior of hollow glass microspheres/Mg alloy composites. Adv Eng Mater. 2021;23:2001301. doi:10.1002/adem.202001301
  • Xu DJ, Liao RQ, Li ZW, et al. Research on productivity for multi-stage fracturing of horizonal wells. Chem Eng Trans. 2015;46:1189–1194. doi:10.3303/CET1546199
  • Canada Chevron, Hydraulic Fracturing. (n.d.). [accessed 2022 Jan 14]. Available from: https://canada.chevron.com/environment/hydraulic-fracturing
  • N. Energy Board - NEB. Canada’s Energy Future 2013 - Energy Supply and Demand Projections to 2035. An Energy Market Assessment. November 2013, 2013.
  • ASM International. Terves to expand magnesium foundry for manufacturing dissolvable metal tools. ASM International; 2018 [accessed 2021 Aug 14]. Available from: https://www.asminternational.org/home/-/journal_content/56/10180/35028237/NEWS
  • Li M, Chen L, Wei R, et al. The application of fully dissolvable frac plug technique in weiyuan gasfield. In: Keerthi S, editor. Soc. Pet. Eng. - SPE Kingdom Saudi Arab. Annu. Tech. Symp. Exhib. 2018, SATS 2018. Society of Petroleum Engineers; 2018. doi:10.2118/192422-ms
  • Fripp M, Walton Z. Degradable metal for use in a fully dissolvable frac plug. Proc. Annu. Offshore Technol. Conf., Offshore Technology Conference; 2016. p. 3467–3475. doi:10.4043/27187-ms
  • Fripp M, Walton Z. Wellbore cool down simplifies using dissolvable materials. Proc. Annu. Offshore Technol. Conf., Offshore Technology Conference; 2018. p. 352–361. doi:10.4043/28875-ms
  • Norman T, Walton Z, Fripp M. Full dissolvable frac plug for high-temperature wellbores. Proc. Annu. Offshore Technol. Conf., Offshore Technology Conference; 2018. p. 312–321. doi:10.4043/28939-ms
  • Flamini DO, Saidman SB. Electrochemical behaviour of Al–Zn–Ga and Al–In–Ga alloys in chloride media. Mater Chem Phys. 2012;136:103–111. doi:10.1016/j.matchemphys.2012.06.036
  • Saidman SB, Garcia SG, Bessone JB. Electrochemical behaviour of Al-In alloys in chloride solutions. J Appl Electrochem. 1995;25:252–258. doi:10.1007/BF00262964
  • Lin JC, Shih HC. Improvement of the current efficiency of an Al-Zn-In anode by heat-treatment. J Electrochem Soc. 1987;134:817–823. doi:10.1149/1.2100578
  • Chen X, Xia Y, Liu Z, et al. Effect of mercury(II) ions on the corrosion resistance of aluminium alloy coatings in 3.5% wt. NaCl solution. Int J Electrochem Sci. 2021;16:211042. doi:10.20964/2021.10.46
  • Keir DS, Pryor MJ, Sperry PR. Galvanic corrosion characteristics of aluminum alloyed with group IV metals. J Electrochem Soc. 1967;114:777. doi:10.1149/1.2426735
  • Osório WR, Freitas ES, Garcia A. EIS parameters and cell spacings of an Al–Bi alloy in NaCl solution. Electrochim Acta. 2013;108:781–787. doi:10.1016/J.ELECTACTA.2013.07.036
  • Yang B, Zhu J, Jiang T, et al. Effect of heat treatment on Al Mg Ga In Sn alloy for hydrogen generation through hydrolysis reaction. Int J Hydrogen Energy. 2017;42:24393–24403. doi:10.1016/j.ijhydene.2017.07.091
  • Ahmed E, Henein H, Qureshi A, et al. Development of aluminum-based dissolvable alloys for hydraulic fracturing applications. Miner Met Mater Ser. 2022: 1101–1114. doi:10.1007/978-3-030-92381-5_105/FIGURES/2
  • Liu J, Shao Z, Zhang X. Development of a high-strength soluble aluminum alloy and Its application in Oil pressure cracking. Chem Technol Fuels Oils. 2019;54:818–823. doi:10.1007/s10553-019-00992-z
  • Fripp M, Walton Z, Norman T. Fully dissolvable fracturing plug for low-temperature wellbores. Proc. - SPE Annu. Tech. Conf. Exhib. Society of Petroleum Engineers (SPE); 2017. doi:10.2118/187335-ms
  • N.T.− 21. Standard guide for laboratory immersion corrosion testing of metals. Houston (TX): NACE; 2021. doi:10.1520/G0031-21
  • Okamoto H, Schlesinger ME, Mueller EM, Editors. Al (aluminum) binary alloy phase diagrams. In: Alloy phase diagrams. City: ASM International; 2016. p. 113–139. doi:10.31399/ASM.HB.V03.A0006144
  • Ag-Al, Ag (silver) binary alloy phase diagrams. In: Alloy phase diagrams; 2016. p. 90–113. doi:10.31399/ASM.HB.V03.A0006143
  • Chen Z, Mo Y, Nie Z. Effect of Zn content on the microstructure and properties of super-high strength Al-Zn-Mg-Cu alloys. Metall Mater Trans A. 2013;44:3910–3920. doi:10.1007/s11661-013-1731-x
  • He TT, Wang W, Chen W, et al. Influence of In and Sn compositions on the reactivity of Al–Ga–In–Sn alloys with water. Int J Hydrogen Energy. 2017;42:5627–5637. doi:10.1016/j.ijhydene.2016.11.112
  • Xie F, Yan X, Ding L, et al. A study of microstructure and microsegregation of aluminum 7050 alloy. Mater Sci Eng A. 2003;355:144–153. doi:10.1016/S0921-5093(03)00056-X
  • Mondal C, Mukhopadhyay AK. On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater Sci Eng A. 2005;391:367–376. doi:10.1016/j.msea.2004.09.013
  • Fan X, Jiang D, Meng Q, et al. The microstructural evolution of an Al–Zn–Mg–Cu alloy during homogenization. Mater Lett. 2006;60:1475–1479. doi:10.1016/J.MATLET.2005.11.049
  • Ii Y, Li P, Zhao G, et al. The constituents in Al–10Zn–2.5Mg–2.5Cu aluminum alloy. Mater Sci Eng A. 2005;397:204–208. doi:10.1016/j.msea.2005.02.013
  • He T, Chen W, Wang W, et al. Effect of different Cu contents on the microstructure and hydrogen production of Al–Cu-Ga-In-Sn alloys for dissolvable materials. J Alloys Compd. 2020;821:153489. doi:10.1016/j.jallcom.2019.153489
  • Ghosh A, Ghosh M. Microstructure and texture development of 7075 alloy during homogenisation. Philos Mag. 2018;98:1470–1490. doi:10.1080/14786435.2018.1439596
  • Wang MF, Xiao DH, Sun BR, et al. Microstructure, mechanical properties and corrosion behavior of Al-Cu-Mg-Sn-Ga-In alloy. J Alloys Compd. 2019;776:172–180. doi:10.1016/j.jallcom.2018.10.290
  • Birbilis N, Cavanaugh MK, Buchheit RG. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corros Sci. 2006;48:4202–4215. doi:10.1016/j.corsci.2006.02.007
  • Zhu Y, Sun K, Frankel GS. Intermetallic phases in aluminum alloys and their roles in localized corrosion. J Electrochem Soc. 2018;165:C807–C820. doi:10.1149/2.0931811jes
  • Yang Y, Tan P, Sui Y, et al. Influence of Zr content on microstructure and mechanical properties of As-cast Al-Zn-Mg-Cu alloy. J Alloys Compd. 2021;867:158920. doi:10.1016/j.jallcom.2021.158920
  • Li XM, Starink MJ. Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al–Zn–Mg–Cu alloys. J Alloys Compd. 2011;509:471–476. doi:10.1016/j.jallcom.2010.09.064
  • Chemingui M, Khitouni M, Jozwiak K, et al. Characterization of the mechanical properties changes in an Al–Zn–Mg alloy after a two-step ageing treatment at 70° and 135°C. Mater Des. 2010;31:3134–3139. doi:10.1016/J.MATDES.2009.12.033
  • Wang D, Ni DR, Ma ZY. Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy. Mater Sci Eng A. 2008;494:360–366. doi:10.1016/j.msea.2008.04.023
  • Li Z, Xiong B, Zhang Y, et al. Investigation of microstructural evolution and mechanical properties during two-step ageing treatment at 115 and 160°C in an Al–Zn–Mg–Cu alloy pre-stretched thick plate. Mater Charact 2008;59:278–282. doi:10.1016/j.matchar.2007.01.006
  • Trenikhin MV, Bubnov AV, Nizovskii AI, et al. Chemical interaction of the In-Ga eutectic with Al and Al-base alloys. Inorg Mater. 2006;42:256–260. doi:10.1134/S0020168506030083
  • Wang W, Zhao XM, Chen DM, et al. Insight into the reactivity of Al-Ga-In-Sn alloy with water. Int J Hydrogen Energy. 2012;37:2187–2194. doi:10.1016/j.ijhydene.2011.10.058
  • Meng Q, Frankel GS. Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys. J Electrochem Soc. 2004;151:B271. doi:10.1149/1.1695385
  • Ziebarth JT, Woodall JM, Kramer RA, et al. Liquid phase-enabled reaction of Al–Ga and Al–Ga–In–Sn alloys with water. Int J Hydrogen Energy. 2011;36:5271–5279. doi:10.1016/j.ijhydene.2011.01.127
  • Woodall JM, Ziebarth JT, Allen CR, et al. Recent results on splitting water with aluminum alloys. Ceram Trans 2009;202:119–127. doi:10.1002/9780470483428.CH13
  • Srinivas M, Adapaka SK, Neelakantan L. Solubility effects of Sn and Ga on the microstructure and corrosion behavior of Al-Mg-Sn-Ga alloy anodes. J Alloys Compd. 2016;683:647–653. doi:10.1016/j.jallcom.2016.05.090
  • Ma Z, Li X. The study on microstructure and electrochemical properties of Al-Mg-Sn-Ga-Pb alloy anode material for Al/AgO battery. J Solid State Electrochem. 2011;15:2601–2610. doi:10.1007/s10008-010-1253-z
  • Wang J, Liu Z, Bai S, et al. Combined effect of Ag and Mg additions on localized corrosion behavior of Al-Cu alloys with high Cu content. J Mater Eng Perform. 2020;29:6108–6117. doi:10.1007/s11665-020-05072-6
  • Senkov ON, Shagiev MR, Senkova SV, et al. Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 2008;56:3723–3738. doi:10.1016/j.actamat.2008.04.005
  • Lasa L, Rodriguez-Ibabe JM. Characterization of the dissolution of the Al2Cu phase in two Al–Si–Cu–Mg casting alloys using calorimetry. Mater Charact. 2002;48:371–378. doi:10.1016/S1044-5803(02)00283-8
  • Zhang Y, Li R, Chen P, et al. Microstructural evolution of Al2Cu phase and mechanical properties of the large-scale Al alloy components under different consecutive manufacturing processes. J Alloys Compd. 2019;808:151634. doi:10.1016/j.jallcom.2019.07.346

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.