230
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in Agricultural Technology: A Review of Slow-Release Nanofertilizers and Innovative Carriers

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1849-1882 | Received 09 Oct 2023, Accepted 26 Feb 2024, Published online: 15 Mar 2024

References

  • Adisa Ishaq, O., V. L. Reddy Pullagurala, J. R. Peralta-Videa, C. O. Dimkpa, W. H. Elmer, J. L. Gardea-Torresdey, and J. C. White. 2019. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environmental Science: Nano 6 (7):2002–30. Royal Society of Chemistry. doi:10.1039/c9en00265k.
  • Agrawal Anjali, M., and P. Pandey. 2015. Scale up of pan coating process using quality by design principles. Journal of Pharmaceutical Sciences 104 (11):3589–611. Elsevier Masson SAS. doi:10.1002/jps.24582.
  • Ahmad, N. N. R., W. J. N. Fernando, and M. H. Uzir. 2015. Parametric evaluation using mechanistic model for release rate of phosphate ions from chitosan-coated phosphorus fertiliser pellets. Biosystems Engineering 129:78–86. Elsevier Ltd. doi:10.1016/j.biosystemseng.2014.09.015.
  • Alexandratos, N., and J. Bruinsma. 2012. World agriculture towards 2030/2050 the 2012 revision proof copy. ESA Working Paper 12 (12):146.
  • Ali Ashraf, F., Z. A. Alrowaili, E. M. El-Giar, M. M. Ahmed, and A. M. El-Kady. 2021. Novel green synthesis of hydroxyapatite uniform nanorods via microwave-hydrothermal route using licorice root extract as template. Ceramics International 47 (3):3928–37. doi:10.1016/j.ceramint.2020.09.256.
  • An, T., H. Cheng, Y. Qin, W. Su, H. Deng, J. Wu, Z. Liu, and X. Guo. 2021. The dual mechanisms of composite biochar and biofilm towards sustainable nutrient release control of phosphate fertilizer: Effect on phosphorus utilization and crop growth. Journal of Cleaner Production 311(April): 127329. doi:10.1016/j.jclepro.2021.127329.
  • Azeem, B., K. Kushaari, Z. B. Man, A. Basit, and T. H. Thanh. 2014. Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release 181 (1):11–21. doi:10.1016/j.jconrel.2014.02.020.
  • Baiamonte, G., C. De Pasquale, V. Marsala, G. Cimò, G. Alonzo, G. Crescimanno, and P. Conte. 2015. Structure alteration of a sandy-clay soil by biochar amendments. Journal of Soils and Sediments 15 (4):816–24. doi:10.1007/s11368-014-0960-y.
  • Bajpai, S. K., M. P. Swarnkar, and S. Ahuja. 2015. On-demand release of urea from a cellulosic hydrogel using a sprinkler based irrigation (SBI) model. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 52 (10):779–85. doi:10.1080/10601325.2015.1067020.
  • Baki, M., and J. Abedi-Koupai. 2018. Preparation and characterization of a superabsorbent slow-release fertilizer with sodium alginate and biochar. Journal of Applied Polymer Science 135 (10): Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran. doi:10.1002/app.45966.
  • Beig, B., M. Bilal Khan Niazi, Z. Jahan, A. Hussain, M. Hussain Zia, and M. Taqi Mehran. 2020. Coating materials for slow release of nitrogen from urea fertilizer: A review. Journal of Plant Nutrition 43 (10):1510–33. Taylor & Francis. doi:10.1080/01904167.2020.1744647.
  • Beig, B., M. Bilal Khan Niazi, Z. Jahan, S. Javed Kakar, G. Abbas Shah, M. Shahid, M. Zia, M. Ul Haq, and M. Imtiaz Rashid. 2020. Biodegradable polymer coated granular urea slows down n release kinetics and improves spinach productivity. Polymers 12 (11):1–19. doi:10.3390/polym12112623.
  • Benício Luíz, P. F., V. Regina Leopoldo Constantino, F. Garcia Pinto, L. Vergütz, J. Tronto, and L. Marciano Da Costa. 2017. Layered double hydroxides: New technology in phosphate fertilizers based on nanostructured materials. ACS Sustainable Chemistry and Engineering 5 (1):399–409. doi:10.1021/acssuschemeng.6b01784.
  • Bhatnagar, A., and M. Sillanpää. 2010. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-a review. Chemical Engineering Journal 157 (2–3):277–96. doi:10.1016/j.cej.2010.01.007.
  • Bong Cassendra, P. C., L. Yee Lim, C. Tin Lee, P. Ying Ong, J. Jaromír Klemeš, C. Li, and Y. Gao. 2020. Lignocellulosic biomass and food waste for biochar production and application: A review. Chemical Engineering Transactions 81 (September):427–32. doi:10.3303/CET2081072.
  • Borges, R., V. Prevot, C. Forano, and F. Wypych. 2017. Design and kinetic study of sustainable potential slow-release fertilizer obtained by mechanochemical activation of clay minerals and potassium monohydrogen phosphate. Industrial and Engineering Chemistry Research 56 (3):708–16. doi:10.1021/acs.iecr.6b04378.
  • Bortolin, A., F. A. Aouada, L. H. C. Mattoso, and C. Ribeiro. 2013. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: Evidence of synergistic effects for the slow release of fertilizers. Journal of Agricultural and Food Chemistry 61 (31):7431–39. doi:10.1021/jf401273n.
  • Bundschuh, M., J. Filser, S. Lüderwald, M. S. McKee, G. Metreveli, G. E. Schaumann, R. Schulz, and S. Wagner. 2018. Nanoparticles in the environment: Where do we come from, where do we go to? Environmental Sciences Europe 30 (1): Springer Berlin Heidelberg. doi:10.1186/s12302-018-0132-6.
  • Cai, Y., H. Qi, Y. Liu, and X. He. 2016. Sorption/Desorption behavior and mechanism of NH4+ by Biochar as a nitrogen fertilizer sustained-release material. Journal of Agricultural and Food Chemistry 64 (24):4958–64. doi:10.1021/acs.jafc.6b00109.
  • Chen, S., Y. Han, M. Yang, X. Zhu, C. Liu, H. Liu, and H. Zou. 2020. Hydrophobically modified water-based polymer for slow-release urea formulation. Progress in Organic Coatings 149:105964. doi:10.1016/j.porgcoat.2020.105964.
  • Chhipa, H. 2017. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15 (1):15–22. Springer International Publishing. doi:10.1007/s10311-016-0600-4.
  • Chowdhury Mohammad, A. 2014. The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices. International Journal of Biological Macromolecules 65:136–47. Elsevier B.V. doi:10.1016/j.ijbiomac.2014.01.012.
  • Costa Milene, M. E., C. M. C.-A. Elaine, L. M. A. Tito, J. Carlos Pinto, and L. F. Rosana. 2013. Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules. Journal of Agricultural and Food Chemistry 61 (42):9984–91. doi:10.1021/jf401185y.
  • Cui, Y., Y. Xiang, Y. Xu, J. Wei, Z. Zhang, L. Li, and J. Li. 2020. Poly-acrylic acid grafted natural rubber for multi-coated slow release compound fertilizer: Preparation, properties and slow-release characteristics. International Journal of Biological Macromolecules 146:540–48. doi:10.1016/j.ijbiomac.2020.01.051.
  • Davidson Drew, W., S. V. Mohit, and X. G. Frank. 2013. Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springer Plus 2 (1):1–9. doi:10.1186/2193-1801-2-318.
  • De, G., K. D. P. Jessa, J. Ytac Dorothy, and T. Tumolva. 2020. Synthesis and characterization of ionically-crosslinked κ-carrageenan/sodiumalginate/carboxymethyl cellulose hydrogel blends for soil water retention and fertilizer release. Solid State Phenomena 304:59–65. SSP. doi:10.4028/www.scientific.net/ssp.304.59.
  • Delfani, M., M. Baradarn Firouzabadi, N. Farrokhi, and H. Makarian. 2014. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis 45 (4):530–40. doi:10.1080/00103624.2013.863911.
  • Dimkpa Christian, O., and S. B. Prem. 2018. Nanofertilizers: New products for the industry? Journal of Agricultural and Food Chemistry 66 (26):6462–73. doi:10.1021/acs.jafc.7b02150.
  • Dimkpa Christian, O., U. Singh, P. S. Bindraban, W. H. Elmer, J. L. Gardea-Torresdey, and J. C. White. 2018. Exposure to weathered and fresh nanoparticle and ionic zn in soil promotes grain yield and modulates nutrient acquisition in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry 66 (37):9645–56. doi:10.1021/acs.jafc.8b03840.
  • Dineshkumar, R., R. Kumaravel, J. Gopalsamy, M. N. Azim Sikder, and P. Sampathkumar. 2018. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste and Biomass Valorization 9 (5):793–800. Springer Netherlands. doi:10.1007/s12649-017-9873-5.
  • Dubey, A., and D. Rao Mailapalli. 2019. Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environmental Technology and Innovation 16: Elsevier B.V.:100452. doi:10.1016/j.eti.2019.100452.
  • Duhan, J. S., R. Kumar, N. Kumar, P. Kaur, K. Nehra, and S. Duhan. 2017. Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports 15:11–23. Elsevier B.V. doi:10.1016/j.btre.2017.03.002.
  • Du, Q., X. Hua Zhao, L. Xia, C. Ji Jiang, X. Guang Wang, Y. Han, J. Wang, and H. Qiu Yu. 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (zea Mays L.). Journal of Integrative Agriculture 18 (2):395–406. doi:10.1016/S2095-3119(18)61953-7.
  • El Assimi, T., O. Lakbita, A. El Meziane, M. Khouloud, A. Dahchour, R. Beniazza, R. Boulif, M. Raihane, and M. Lahcini. 2020. Sustainable coating material based on chitosan-clay composite and paraffin wax for slow-release DAP fertilizer. International Journal of Biological Macromolecules 161:492–502. Cadi Ayyad Univ, Fac Sci & Tech, Dept Chem, IMED Lab, Marrakech 40000, Morocco WE – Science Citation Index Expanded (SCI-EXPANDED). doi:10.1016/j.ijbiomac.2020.06.074.
  • Elhassani, C. E., Y. Essamlali, M. Aqlil, A. M. Nzenguet, I. Ganetri, and M. Zahouily. 2019. Urea-impregnated HAP encapsulated by lignocellulosic biomass-extruded Composites: A novel slow-release fertilizer. Environmental Technology & Innovation 15: Univ Hassan II Casablanca, Lab Mat Catalyse & Valorisat Ressources Nat MaCaV, URAC 24, FST Mohammedia BP 146, Casablanca 20650, Morocco WE – Science Citation Index Expanded (SCI-EXPANDED). doi:10.1016/j.eti.2019.100403.
  • Elmer Wade, H., and C. W. Jason. 2016. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano 3 (5):1072–79. Royal Society of Chemistry. doi:10.1039/c6en00146g.
  • Essawy Hisham, A., B. M. G. Mohamed, F. Abd El-Hai, and F. M. Magdy. 2016. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. International Journal of Biological Macromolecules 89:144–51. Elsevier B.V. doi:10.1016/j.ijbiomac.2016.04.071.
  • Fageria, N. K., C. Baligar, and R. B. Clark. 2002. Micronutrients in crop production. Advances in Agronomy 77: Elsevier Inc. doi:10.1016/s0065-2113(02)77015-6.
  • Feng, C., S. Lü, C. Gao, X. Wang, X. Xu, X. Bai, N. Gao, M. Liu, and L. Wu. 2015. “Smart” fertilizer with temperature- and PH-responsive behavior via surface-initiated polymerization for controlled release of nutrients. ACS Sustainable Chemistry and Engineering 3 (12):3157–66. doi:10.1021/acssuschemeng.5b01384.
  • Fernández-Escobar, R., M. Benlloch, E. Herrera, and J. M. García-Novelo. 2004. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Scientia Horticulturae 101 (1–2):39–49. doi:10.1016/j.scienta.2003.09.008.
  • Fertahi, S., I. Bertrand, M. Amjoud, A. Oukarroum, M. Arji, and A. Barakat. 2019. Properties of coated slow-release triple superphosphate (TSP) fertilizers based on lignin and carrageenan formulations. ACS Sustainable Chemistry & Engineering 7 (12):10371–82. Univ Montpellier, Montpellier SupAgro, Eco&Sols, CIRAD,INRA,IRD, 2 Pl Pierre Viala, F-34060 Montpellier, France WE - Science Citation Index Expanded (SCI-EXPANDED). doi:10.1021/acssuschemeng.9b00433.
  • Fertahi, S., I. Bertrand, M. Ilsouk, M. B. A. Abdallah Oukarroum, Y. Zeroual, and A. Barakat. 2020. New generation of controlled release phosphorus fertilizers based on biological macromolecules: Effect of formulation properties on phosphorus release. International Journal of Biological Macromolecules 143:153–62. Elsevier B.V. doi:10.1016/j.ijbiomac.2019.12.005.
  • Fertahi, S., M. Ilsouk, Y. Zeroual, A. Oukarroum, and A. Barakat. 2021. Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. Journal of Controlled Release 330:341–61. Elsevier B.V. doi:10.1016/j.jconrel.2020.12.026.
  • Fraceto Leonardo, F., R. Grillo, A. D. M. Gerson, V. Scognamiglio, G. Rea, and C. Bartolucci. 2016. Nanotechnology in agriculture: Which innovation potential does it have? Frontiers in Environmental Science 4 (March):1–5. doi:10.3389/fenvs.2016.00020.
  • García Ma, C., J. A. Díez, A. Vallejo, L. García, and C. C. Ma. 1996. Use of kraft pine lignin in controlled-release fertilizer formulations. Industrial and Engineering Chemistry Research 35 (1):245–49. doi:10.1021/ie950056f.
  • Geng, X., and W. A. Henderson. 2012. Pretreatment of Corn Stover by combining ionic liquid dissolution with alkali extraction. Biotechnology and Bioengineering 109 (1):84–91. doi:10.1002/bit.23281.
  • Ge, J., R. Wu, X. Shi, H. Yu, M. Wang, and W. Li. 2002. Biodegradable polyurethane materials from bark and starch. II. Coating material for controlled-release fertilizer. Journal of Applied Polymer Science 86 (12):2948–52. doi:10.1002/app.11211.
  • Gómez-Morales, J., M. Iafisco, J. Manuel Delgado-López, S. Sarda, and C. Drouet. 2013. Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Progress in Crystal Growth and Characterization of Materials 59 (1):1–46. doi:10.1016/j.pcrysgrow.2012.11.001.
  • González, M. E., M. Cea, J. Medina, A. González, M. C. Diez, P. Cartes, C. Monreal, and R. Navia. 2015. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Science of the Total Environment 505:446–53. Elsevier B.V. doi:10.1016/j.scitotenv.2014.10.014.
  • Guo, M., M. Liu, R. Liang, and A. Niu. 2006. Granular urea-formaldehyde slow-release fertilizer with superabsorbent and moisture preservation. Journal of Applied Polymer Science 99 (6):3230–35. doi:10.1002/app.22892.
  • Guo, M., M. Liu, F. Zhan, and L. Wu. 2005. Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Industrial and Engineering Chemistry Research 44 (12):4206–11. doi:10.1021/ie0489406.
  • Gypser, S., and D. Freese. 2020. Phosphorus release from vivianite and hydroxyapatite by organic and inorganic compounds. Pedosphere 30 (2):190–200. Soil Science Society of China. doi:10.1016/S1002-0160(20)60004-2.
  • Haghighi, M., R. Abolghasemi, and J. A. T. da Silva. 2014. Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-se amendment. Scientia Horticulturae 178:231–40. Elsevier B.V. doi:10.1016/j.scienta.2014.09.006.
  • Harish Prashanth, K. V., and R. N. Tharanathan. 2007. Chitin/chitosan: Modifications and their unlimited application potential-an overview. Trends in Food Science and Technology 18 (3):117–31. doi:10.1016/j.tifs.2006.10.022.
  • Hasan, M. M., M. Mainul Hasan, A. Jaime, T. da Silva, and X. Li. 2016. Regulation of phosphorus uptake and utilization: Transitioning from Current knowledge to practical strategies. Cellular & Molecular Biology Letters 21 (1):1–19. Cellular & Molecular Biology Letters. doi:10.1186/s11658-016-0008-y.
  • Hassan, N., R. Abdullah, T. Khadiran, P. Elham, and P. Vejan. 2021. Biochar derived from oil palm trunk as a potential precursor in the production of high-performance activated carbon. Biomass Conversion and Biorefinery 13 (123456789):15687–703. Springer Berlin Heidelberg. doi:10.1007/s13399-021-01797-z.
  • Hayles, J., L. Johnson, C. Worthley, and D. Losic. 2017. Nanopesticides: A review of Current research and perspectives. New Pesticides and Soil Sensors. Elsevier Inc. doi: 10.1016/B978-0-12-804299-1.00006-0.
  • He, Y., Z. Wu, L. Tu, Y. Han, G. Zhang, and C. Li. 2015. Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Applied Clay Science 109–110:68–75. Elsevier B.V. doi:10.1016/j.clay.2015.02.001.
  • Hoagland, D. R. and D. I. Arnon. 1950. The water-culture method for growing plants without soil. California agricultural experiment station, circular-347.
  • Holkar Chandrakant, R., A. J. Jadhav, P. S. Bhavsar, S. Kannan, D. V. Pinjari, and A. B. Pandit. 2016. Acoustic cavitation assisted alkaline hydrolysis of wool based keratins to produce organic amendment fertilizers. ACS Sustainable Chemistry and Engineering 4 (5):2789–96. doi:10.1021/acssuschemeng.6b00298.
  • Hu, W., T. D. Coomer, D. A. Loka, D. M. Oosterhuis, and Z. Zhou. 2017. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiology and Biochemistry 115:408–17. Elsevier Masson SAS. doi:10.1016/j.plaphy.2017.04.005.
  • Itelima, J. U., W. J. Bang, I. A. Onyimba, M. D. Sila, and O. J. Egbere. 2018. Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review. Journal of Microbiology 2 (1):74–83.
  • Jaberzadeh, A., P. Moaveni, H. Reza Tohidi Moghadam, and H. Zahedi. 2013. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41 (1):201–07. doi:10.15835/nbha4119093.
  • Jamnongkan, T., and S. Kaewpirom. 2010. Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. Journal of Polymers and the Environment 18 (3):413–21. doi:10.1007/s10924-010-0228-6.
  • Jarosiewicz, A., and M. Tomaszewska. 2003. Controlled-release NPK fertilizer encapsulated by polymeric membranes. Journal of Agricultural and Food Chemistry 51 (2):413–17. doi:10.1021/jf020800o.
  • Jia, X., G.-X. Zhang, J.-M. Hu, Z.-Y. Liu, H.-Y. Wang, and F. Zhou. 2013. Polydopamine film coated controlled-release multielement compound fertilizer based on mussel-inspired chemistry. Journal of Agricultural and Food Chemistry 61 (12):2919–24. doi:10.1021/jf3053059.
  • Jia, C., M. Zhang, and P. Lu. 2020. Preparation and characterization of polyurethane-/MMT nanocomposite-coated urea as controlled-release fertilizers. Polymer-Plastics Technology & Materials 59 (9):975–84. Taylor & Francis. doi:10.1080/25740881.2020.1719136.
  • Jin, S., Y. Wang, J. He, Y. Yang, X. Yu, and G. Yue. 2013. Preparation and properties of a degradable interpenetrating polymer networks based on starch with water retention, amelioration of soil, and slow release of nitrogen and phosphorus fertilizer. Journal of Applied Polymer Science 128 (1):407–15. doi:10.1002/app.38162.
  • Johnson Jane, M. F., W. W. Wilhelm, D. L. Karlen, D. W. Archer, B. Wienhold, D. T. Lightle, D. Laird, J. Baker, T. E. Ochsner, J. M. Novak, et al. 2010. Nutrient removal as a function of corn stover cutting height and cob harvest. Bioenergy Research 3 (4):342–52. doi:10.1007/s12155-010-9093-3.
  • Junior Carlos, R. F., F. Nunes Tanaka, A. Bortolin, M. R. de Moura, and F. Ahmad Aouada. 2018. Thermal and morphological characterization of highly porous nanocomposites for possible application in potassium controlled release. Journal of Thermal Analysis and Calorimetry 131 (3):2205–12. doi:10.1007/s10973-017-6755-9.
  • Kammann Claudia, I., H. Peter Schmidt, N. Messerschmidt, S. Linsel, D. Steffens, C. Müller, H. Werner Koyro, P. Conte, and J. Stephen. 2015. Plant growth improvement mediated by nitrate capture in co-composted biochar. Scientific Reports 5 (1):1–13. Nature Publishing Group. doi:10.1038/srep11080.
  • Kashyap, P. L., X. Xiang, and P. Heiden. 2015. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77:36–51. Elsevier B.V. doi:10.1016/j.ijbiomac.2015.02.039.
  • Kenawy, E. R., and M. A. Sakran. 1996. Controlled release formulations of agrochemicals from calcium alginate. Industrial and Engineering Chemistry Research 35 (10):3726–29. doi:10.1021/ie950448m.
  • Khan, M. N., M. Mobin, Z. K. Abbas, and S. A. Alamri. 2017. Fertilizers and their contaminants in soils, surface and Groundwater. Encyclopedia of the Anthropocene 1–5: Elsevier Inc. doi:10.1016/B978-0-12-809665-9.09888-8.
  • Kottegoda, N., I. Munaweera, N. Madusanka, and V. Karunaratne. 2011. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science 101 (1):73–78.
  • Kottegoda, N., C. Sandaruwan, G. Priyadarshana, A. Siriwardhana, U. A. Rathnayake, D. Madushanka Berugoda Arachchige, A. R. Kumarasinghe, D. Dahanayake, V. Karunaratne, and G. A. J. Amaratunga. 2017. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. Agricultural Science & Technology Nano 11 (2):1214–21. doi:10.1021/acsnano.6b07781.
  • Kremer Robert, J. 2019. Bioherbicides and nanotechnology: Current status and future trends. Nano-biopesticides Today and future perspectives. Elsevier Inc. doi:10.1016/B978-0-12-815829-6.00015-2.
  • Kumaraswamy, R. V., S. Kumari, R. Chandra Choudhary, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2018. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules 113 (2017):494–506. Elsevier B.V. doi:10.1016/j.ijbiomac.2018.02.130.
  • Kumaraswamy, R. V., V. Saharan, S. Kumari, R. Chandra Choudhary, A. Pal, S. Sundar Sharma, S. Rakshit, R. Raliya, and P. Biswas. 2021. Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea Mays L.). Plant Physiology & Biochemistry 159 (June 2020):53–66. Elsevier Masson SAS. doi:10.1016/j.plaphy.2020.11.054.
  • Kumar, S., M. Nehra, N. Dilbaghi, G. Marrazza, A. Aly Hassan, and K. Hyun Kim. 2019. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release 294 (November 2018):131–53. Elsevier. doi:10.1016/j.jconrel.2018.12.012.
  • Kumar, A., K. Singh, P. Verma, O. Singh, A. Panwar, T. Singh, Y. Kumar, and R. Raliya. 2022. Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Scientific Reports 12 (1):6938. doi:10.1038/s41598-022-10843-3.
  • Kusumastuti, Y., A. Istiani, Rochmadi, and C. Wahyu Purnomo. 2019. Chitosan-based polyion multilayer coating on NPK fertilizer as controlled released fertilizer. Advances in Materials Science and Engineering 2019:1–8. doi:10.1155/2019/2958021.
  • Lateef, A., R. Nazir, N. Jamil, S. Alam, R. Shah, M. Naeem Khan, and M. Saleem. 2016. Synthesis and characterization of zeolite based nano-composite: An environment friendly slow release fertilizer. Microporous and Mesoporous Materials 232:174–83. Elsevier Ltd. doi:10.1016/j.micromeso.2016.06.020.
  • Liang, B., J. Lehmann, S. P. Sohi, J. E. Thies, B. O’Neill, L. Trujillo, J. Gaunt, D. Solomon, J. Grossman, E. G. Neves, et al. 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41 (2):206–13. Elsevier Ltd. doi:10.1016/j.orggeochem.2009.09.007.
  • Li, Q., E. T. Dunn, E. W. Grandmaison, and M. F. A. Goosen. 1992. Applications and properties of chitosan. Journal of Bioactive and Compatible Polymers 7 (4):370–97. doi:10.1177/088391159200700406.
  • Li, X., Q. Li, Y. Su, Q. Yue, B. Gao, and Y. Su. 2015. A novel wheat straw cellulose-based semi-IPNs superabsorbent with integration of water-retaining and controlled-release fertilizers. Journal of the Taiwan Institute of Chemical Engineers 55:170–79. doi:10.1016/j.jtice.2015.04.022.
  • Li, X., Q. Li, X. Xu, Y. Su, Q. Yue, and B. Gao. 2016. Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. Journal of the Taiwan Institute of Chemical Engineers 60:564–72. Elsevier B.V. doi:10.1016/j.jtice.2015.10.027.
  • Lin Shu, L., J. Kost, M. L. Fishman, and K. B. Hicks. 2008. A review: Controlled release systems for agricultural and food applications. ACS Symposium Series 992:265–81. doi:10.1021/bk-2008-0992.ch014.
  • Liu, R., and R. Lal. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (glycine max). Scientific Reports 4 (1):1–6. doi:10.1038/srep05686.
  • Liu, R., and R. Lal. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514 (2015):131–39. Elsevier B.V. doi:10.1016/j.scitotenv.2015.01.104.
  • Liu Xiaofeng, B. V. K. V. K., P. Jia, and J. You. 2019. Hard negative generation for identity-disentangled facial expression recognition. Pattern Recognition 88:1–12. Elsevier Ltd. doi:10.1016/j.patcog.2018.11.001.
  • Li, P., A. Wang, W. Du, L. Mao, Z. Wei, S. Wang, H. Yuan, R. Ji, and L. Zhao. 2020. Insight into the interaction between fe-based nanomaterials and maize (Zea Mays) plants at metabolic level. Science of the Total Environment 738: Elsevier B.V.:139795. doi:10.1016/j.scitotenv.2020.139795.
  • Li, R., J. J. Wang, Z. Zhang, M. Kumar Awasthi, D. Du, P. Dang, Q. Huang, Y. Zhang, and L. Wang. 2018. Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling. Science of the Total Environment 642:526–36. doi:10.1016/j.scitotenv.2018.06.092.
  • López, C. A., L. Deladino, and M. Martino. 2013. Effect of starch filler on calcium-alginate hydrogels loaded with Yerba Mate Antioxidants. Carbohydrate Polymers 95 (1):315–23. Elsevier Ltd. doi:10.1016/j.carbpol.2013.03.019.
  • Lubkowski, K., A. Smorowska, B. Grzmil, and A. Kozłowska. 2015. Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of Poly (Butylene Succinate) and dimerized fatty acid. Journal of Agricultural and Food Chemistry 63 (10):2597–605. doi:10.1021/acs.jafc.5b00518.
  • Lü, S., C. Gao, X. Wang, X. Xu, X. Bai, N. Gao, C. Feng, Y. Wei, L. Wu, and M. Liu. 2014. Synthesis of a starch derivative and its application in fertilizer for slow nutrient release and water-holding. RSC Advances 4 (93):51208–14. Royal Society of Chemistry. doi:10.1039/c4ra06006g.
  • Lu, H., H. Tian, Z. Liu, M. Zhang, C. Zhao, Y. Guo, R. Guan, Q. Chen, X. Yu, H. Wang, et al. 2019. Polyolefin wax modification improved characteristics of nutrient release from biopolymer-coated phosphorus fertilizers. American Chemical Society Omega 4 (23):20402–09. doi:10.1021/acsomega.9b03348.
  • Lu, H., H. Tian, M. Zhang, Z. Liu, Q. Chen, R. Guan, and H. Wang. 2020. Water polishing improved controlled-release characteristics and fertilizer efficiency of castor oil-based polyurethane coated diammonium phosphate. Scientific Reports 10 (1):1–10. Springer US. doi:10.1038/s41598-020-62611-w.
  • Madan, H. R., S. C. Sharma, U. D. Suresh, Y. S. Vidya, H. Nagabhushana, H. Rajanaik, K. S. Anantharaju, S. C. Prashantha, and P. Sadananda Maiya. 2016. Facile green fabrication of nanostructure ZnO plates, bullets, Flower, prismatic tip, closed pine cone: Their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy 152:404–16. Elsevier B.V. doi:10.1016/j.saa.2015.07.067.
  • Maghsoodi, M. R., L. Ghodszad, and B. Asgari Lajayer. 2020. Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: Potentials, challenges and effects on plants. Environmental Technology & Innovation 19: Elsevier B.V. doi:10.1016/j.eti.2020.100869.
  • Maghsoodi, M. R., N. Najafi, A. Reyhanitabar, and S. Oustan. 2020. Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled-release urea fertilizers. GEODERMA 379. univ tabriz, fac agr, dept doil dci, tabriz 5166616471, Iran FU - vice chancellor for research and technology of the university of tabriz, Iran; University of tabriz FX - This paper is published as a part of a Ph.D. dissertation supported by the vice Ch. doi:10.1016/j.geoderma.2020.114644 WE - Science Citation Index Expanded (SCI-Expanded).
  • Ma, Z., X. Jia, J. Hu, Z. Liu, H. Wang, and F. Zhou. 2013. Mussel-inspired thermosensitive polydopamine- graft -Poly (hypenCapswithspaceRetainColl1sopropylacrylamide) coating for controlled-release fertilizer. Journal of Agricultural and Food Chemistry 61 (50):12232–37. doi:10.1021/jf4038826.
  • Ma, Z. Y., X. Jia, G. Xiang Zhang, J. Mei Hu, X. Lan Zhang, Z. Yong Liu, H. Yun Wang, and F. Zhou. 2013. PH-Responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator. Journal of Agricultural and Food Chemistry 61 (23):5474–82. doi:10.1021/jf401102a.
  • Malerba, M., and R. Cerana. 2016. Chitosan effects on plant systems. International Journal of Molecular Sciences 17 (7):1–15. doi:10.3390/ijms17070996.
  • Ma, Z., Q. Li, Q. Yue, B. Gao, X. Xu, and Q. Zhong. 2011. Synthesis and characterization of a novel super-absorbent based on wheat straw. Bioresource Technology 102 (3):2853–58. Elsevier Ltd. doi:10.1016/j.biortech.2010.10.072.
  • Manikandan, A., and K. Subramanian. 2016. Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and Alfisols. International Journal of Plant & Soil Science 9 (4):1–9. doi:10.9734/ijpss/2016/22103.
  • Marschner, P. 2012. Marschner’s Mineral Nutrition of Higher Plants. Mineral Nutrition of Higher Plants. Part I, (pp. 186-210).
  • Meftah, K. I., N. El Mernissi, S. Eddine Azaroual, M. El Mehdi Mekhzoum, A. El Kacem Qaiss, and R. Bouhfid. 2021. Bioformulation of microbial fertilizer based on Clay and alginate encapsulation. Current Microbiology 78 (1):86–94. Springer US. doi:10.1007/s00284-020-02262-2.
  • Messa, L. L., and R. Faez. 2020. Spray-dried chitosan/nanocellulose microparticles: Synergistic effects for the sustained release of NPK fertilizer. Cellulose 27 (17):10077–93. Springer Netherlands. doi:10.1007/s10570-020-03482-2.
  • Mulder, W. J., R. J. A. Gosselink, M. H. Vingerhoeds, P. F. H. Harmsen, and D. Eastham. 2011. Lignin based controlled release coatings. Industrial Crops and Products 34 (1):915–20. Elsevier B.V. doi:10.1016/j.indcrop.2011.02.011.
  • Muradoglu, F., M. Gundogdu, S. Ercisli, T. Encu, F. Balta, H. Ze Jaafar, and M. Zia-Ul-Haq. 2015. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in Strawberry. Biological Research 48 (1):3–9. doi:10.1186/s40659-015-0001-3.
  • Naz, M. Y., and S. Anwar Sulaiman. 2016. Slow release coating remedy for nitrogen loss from conventional urea: A review. Journal of Controlled Release 225:109–20. Elsevier B.V. doi:10.1016/j.jconrel.2016.01.037.
  • Ni, B., M. Liu, and S. Lü. 2009. Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chemical Engineering Journal 155 (3):892–98. doi:10.1016/j.cej.2009.08.025.
  • Ni, B., M. Liu, S. Lü, L. Xie, and Y. Wang. 2011. Environmentally friendly slow-release nitrogen fertilizer. Journal of Agricultural and Food Chemistry 59 (18):10169–75. doi:10.1021/jf202131z.
  • Niu, Y., and H. Li. 2012. Controlled release of urea encapsulated by starch-g-Poly(Vinyl Acetate). Industrial and Engineering Chemistry Research 51 (38):12173–77. doi:10.1021/ie301684p.
  • Noh, Y. D., S. Komarneni, and M. Park. 2015. Mineral-based slow release fertilizers: A review. Korean Journal of Soil Science and Fertilizer 48 (1):1–7. doi:10.7745/kjssf.2015.48.1.001.
  • Noppakundilograt, S., N. Pheatcharat, and S. Kiatkamjornwong. 2015. Multilayer-coated NPK compound fertilizer hydrogel with controlled nutrient release and water absorbency. Journal of Applied Polymer Science 132 (2):1–11. doi:10.1002/app.41249.
  • O’Hara, I. M., Z. Zhang, W. O. S. Doherty, and C. M. Fellows. 2012. Lignocellulosics as a renewable feedstock for chemical industry: Chemical hydrolysis and pretreatment processes. Green Chemistry for Environmental Remediation 505–60. doi:10.1002/9781118287705.ch17.
  • Oosterhuis Derrick, M., D. A. Loka, E. M. Kawakami, and W. T. Pettigrew. 2014. The physiology of potassium in crop production. Advances in Agronomy 126: Elsevier. doi:10.1016/B978-0-12-800132-5.00003-1.
  • Osman, H. E., M. Al-Jabri, D. K. El-Ghareeb, and Y. A. Al-Maroai. 2020. Impact of aluminum and zinc oxides on morphological characters, germination, metals accumulation and DNA in fenugreek (Trigonella foenum-graecum). Journal of the Saudi Society of Agricultural Sciences 19 (8):510–20. The Authors. doi:10.1016/j.jssas.2020.09.004.
  • Pallavi, C. M., M. R. Srivastava, S. Arora, and A. K. Sharma. 2016. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6 (2):1–10. Springer Berlin Heidelberg. doi:10.1007/s13205-016-0567-7.
  • Pandey, P., V. Irulappan, M. V. Bagavathiannan, and M. Senthil-Kumar. 2017 April. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science 8: doi:10.3389/fpls.2017.00537.
  • Pandey, M. P., and C. S. Kim. 2011. Lignin depolymerization and conversion: A review of thermochemical methods. Chemical Engineering and Technology 34 (1):29–41. doi:10.1002/ceat.201000270.
  • Peng, Z., and F. Chen. 2011. Synthesis and properties of lignin-based polyurethane hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials 60 (9):674–83. doi:10.1080/00914037.2010.551353.
  • Pérez-de-Luque, A. 2017. Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science 5 (April):1–7. doi:10.3389/fenvs.2017.00012.
  • Pérez-García, S., M. Fernández-Pérez, M. Villafranca-Sánchez, E. González-Pradas, and F. Flores-Céspedes. 2007. Controlled release of ammonium nitrate from ethylcellulose coated formulations. Industrial and Engineering Chemistry Research 46 (10):3304–11. doi:10.1021/ie061530s.
  • Perez Jonas, J., and J. F. Nora. 2016. Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydrate Polymers 148:134–42. Elsevier Ltd. doi:10.1016/j.carbpol.2016.04.054.
  • Pittman Charles, U., D. Mohan, A. Eseyin, Q. Li, L. Ingram, E.-B. M. Hassan, B. Mitchell, H. Guo, and P. H. Steele. 2012. Characterization of bio-oils produced from fast pyrolysis of corn stalks in an auger reactor. Energy & Fuels 26 (6):3816–25. doi:10.1021/ef3003922.
  • Pourjavadi, A., F. Zeidabadi, and B. Sh. 2010, June. Alginate-based biodegradable superabsorbents as candidates for diclofenac sodium delivery systems. Journal of Applied Polymer Science 118 (4):2015–23. doi: 10.1002/app.32205.
  • Pradhan, S., P. Patra, S. Das, S. Chandra, S. Mitra, K. Kumar Dey, S. Akbar, P. Palit, and A. Goswami. 2013. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environmental Science and Technology 47 (22):13122–31. doi:10.1021/es402659t.
  • Priyam, A., R. Kumar Das, A. Schultz, and P. Prasad Singh. 2019. A new method for biological synthesis of agriculturally relevant nanohydroxyapatite with elucidated effects on soil bacteria. Scientific Reports 9 (1):1–14. Springer US. doi:10.1038/s41598-019-51514-0.
  • Priyam, A., N. Yadav, P. M. Reddy, L. O. B. Afonso, A. G. Schultz, and P. Prasad Singh. 2022. Fertilizing benefits of biogenic phosphorous nanonutrients on Solanum lycopersicum in soils with variable PH. Heliyon 8 (3):e09144. doi:10.1016/j.heliyon.2022.e09144.
  • Qian, L., L. Chen, S. Joseph, G. Pan, L. Li, J. Zheng, X. Zhang, J. Zheng, X. Yu, and J. Wang. 2014. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Management 5 (2):145–54. doi:10.1080/17583004.2014.912866.
  • Qiao, D., H. Liu, L. Yu, X. Bao, G. P. Simon, E. Petinakis, and L. Chen. 2016. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydrate Polymers 147:146–54. Elsevier Ltd. doi:10.1016/j.carbpol.2016.04.010.
  • Rahman, M. M., M. Gulshan Ara, M. Abdul Alim, M. Sahab Uddin, A. Najda, G. M. Albadrani, A. A. Sayed, S. A. Mousa, and M. M. Abdel-Daim. 2021. Mesoporous carbon: A versatile material for scientific applications. International Journal of Molecular Sciences 22 (9):4498. doi:10.3390/ijms22094498.
  • Rai, V., S. Acharya, and N. Dey. 2012. Implications of nanobiosensors in agriculture. Journal of Biomaterials and Nanobiotechnology 3 (02):315–24. doi:10.4236/jbnb.2012.322039.
  • Rajput, V., T. Minkina, S. Sushkova, A. Behal, A. Maksimov, E. Blicharska, K. Ghazaryan, H. Movsesyan, and N. Barsova. 2020. ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environmental Geochemistry and Health 42 (1):147–58. Springer Netherlands. doi:10.1007/s10653-019-00317-3.
  • Rattanamanee, A., H. Niamsup, L. Ongnuan Srisombat, W. Punyodom, R. Watanesk, and S. Watanesk. 2015. Role of chitosan on some physical properties and the urea controlled release of the silk fibroin/gelatin hydrogel. Journal of Polymers and the Environment 23 (3):334–40. Springer US. doi:10.1007/s10924-014-0703-6.
  • Reháková, M., S. Čuvanová, M. Dzivák, J. Rimár, and Z. Gaval’Ová. 2004. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science 8 (6):397–404. doi:10.1016/j.cossms.2005.04.004.
  • Rinaudo, M. 2006. Chitin and chitosan: Properties and applications. Progress in Polymer Science (Oxford) 31 (7):603–32. doi:10.1016/j.progpolymsci.2006.06.001.
  • Riyajan, S. A., Y. Sasithornsonti, and P. Phinyocheep. 2012. Green natural rubber-g-modified starch for controlling urea release. Carbohydrate Polymers 89 (1):251–58. Elsevier Ltd. doi:10.1016/j.carbpol.2012.03.004.
  • Rodrigues Sónia, M., P. Demokritou, N. Dokoozlian, C. Ogilvie Hendren, B. Karn, M. S. Mauter, O. A. Sadik, M. Safarpour, J. M. Unrine, J. Viers, et al. 2017. Nanotechnology for sustainable food production: Promising opportunities and scientific challenges. Environmental Science: Nano 4 (4):767–81. Royal Society of Chemistry. doi:10.1039/c6en00573j.
  • Rodríguez-González, V., C. Terashima, and A. Fujishima. 2019. Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 40:49–67. doi:10.1016/j.jphotochemrev.2019.06.001.
  • Rop, K., G. N. Karuku, D. Mbui, I. Michira, and N. Njomo. 2018. Formulation of slow release NPK fertilizer (cellulose-graft-poly(acrylamide)/nano-hydroxyapatite/soluble fertilizer) composite and evaluating its N mineralization potential. Annals of Agricultural Sciences 63 (2):163–72. doi:10.1016/j.aoas.2018.11.001.
  • Rop, K., G. N. Karuku, D. Mbui, N. Njomo, and I. Michira. 2019. Evaluating the effects of formulated nano-npk slow release fertilizer composite on the performance and yield of maize, kale and Capsicum. Annals of Agricultural Science 64 (1):9–19. Univ Nairobi, Dept Chem, POB 30197-00100, Nairobi, Kenya WE - Science Citation Index Expanded (SCI-EXPANDED). doi:10.1016/j.aoas.2019.05.010.
  • Roshanravan, B., S. Mahmoud Soltani, F. Mahdavi, S. Abdul Rashid, and M. Khanif Yusop. 2014. Preparation of encapsulated urea-kaolinite controlled release fertiliser and their effect on rice productivity. Chemical Speciation & Bioavailability 26 (4):249–56. doi:10.3184/095422914X14146901352512.
  • Rui, M., C. Ma, Y. Hao, J. Guo, Y. Rui, X. Tang, Q. Zhao, X. Fan, Z. Zhang, and T. Hou. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis Hypogaea). Frontiers in Plant Science 7 (June2016):1–10. doi:10.3389/fpls.2016.00815.
  • Saadat, S., A. Reza Sepaskhah, and S. Azadi. 2012. Zeolite effects on immobile water content and mass exchange coefficient at different soil textures. Communications in Soil Science and Plant Analysis 43 (22):2935–46. doi:10.1080/00103624.2012.724748.
  • Sabadini Rodrigo, C., C. A. M. Virginia, and A. Pawlicka. 2015. Synthesis and characterization of Gellan Gum: Chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose 22 (3):2045–54. Springer Netherlands. doi:10.1007/s10570-015-0590-6.
  • Sahni, E., and B. Chaudhuri. 2012. Experimental and modeling approaches in characterizing coating uniformity in a pan Coater: A literature review. Pharmaceutical Development and Technology 17 (2):134–47. doi:10.3109/10837450.2011.649852.
  • Salama, D. M., M. E. Abd El-Aziz, E. A. Shaaban, S. A. Osman, and M. S. Abd El-Wahed. 2022. The impact of nanofertilizer on agro-morphological criteria, yield, and genomic stability of common bean (Phaseolus vulgaris L.). Scientific Reports 12 (1):18552. doi:10.1038/s41598-022-21834-9.
  • Salem Nidá, M., L. S. Albanna, A. M. Awwad, Q. M. Ibrahim, and A. O. Abdeen. 2015. Green synthesis of nano-sized sulfur and its effect on plant growth. Journal of Agricultural Science 8 (1):188. doi:10.5539/jas.v8n1p188.
  • Sangeetha, C., and P. Baskar. 2016. Zeolite and its potential uses in agriculture : A critical review. Agricultural Reviews 37 (of):101–08. doi:10.18805/ar.v0iof.9627.
  • Santos, B. R. D., F. Britti Bacalhau, T. Dos Santos Pereira, C. Fonseca Souza, and R. Faez. 2015. Chitosan-montmorillonite microspheres: A sustainable fertilizer delivery system. Carbohydrate Polymers 127:340–46. Elsevier Ltd. doi:10.1016/j.carbpol.2015.03.064.
  • Sarmah, D., and N. Karak. 2020. Biodegradable superabsorbent hydrogel for water holding in soil and controlled-release fertilizer. Journal of Applied Polymer Science 137 (13):1–12. doi:10.1002/app.48495.
  • Saruchi, V. K., H. Mittal, and S. M. Alhassan. 2019. Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. International Journal of Biological Macromolecules 132:1252–61. doi:10.1016/j.ijbiomac.2019.04.023.
  • Sathiyabama, M., and A. Manikandan. 2018. Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger Millet (Eleusine Coracana Gaertn.) plants against blast disease. Journal of Agricultural and Food Chemistry 66 (8):1784–90. doi:10.1021/acs.jafc.7b05921.
  • Schmidt, H. P., B. Hari Pandit, V. Martinsen, G. Cornelissen, P. Conte, and C. I. Kammann. 2015. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture (Switzerland) 5 (3):723–41. doi:10.3390/agriculture5030723.
  • Schneider, T. A., L. Deladino, and N. Zaritzky. 2016. Yerba mate (llex paraguariensis) waste and Alginate as a matrix for the encapsulation of N fertilizer. ACS Sustainable Chemistry and Engineering 4 (4):2449–58. doi:10.1021/acssuschemeng.6b00344.
  • Sedighikamal, H., R. Zarghami, P. Khadiv-Parsi, and N. Mostoufi. 2015. Sustained release coating of ibuprofen pellets at Wurster fluidization: Statistical approach. Journal of Pharmaceutical Investigation 45 (4):341–47. doi:10.1007/s40005-015-0177-0.
  • Shukla, P., P. Chaurasia, K. Younis, O. Shafiq Qadri, S. Ahmad Faridi, and G. Srivastava. 2019. Nanotechnology in sustainable agriculture: Studies from seed priming to post-harvest management. Nanotechnology for Environmental Engineering 4 (1):1–15. Springer International Publishing. doi:10.1007/s41204-019-0058-2.
  • Siddiqui Manzer, H., H. A.-W. Mohamed, M. Faisal, and A. A. S. Abdulaziz. 2014. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry 33 (11):2429–37. doi:10.1002/etc.2697.
  • Sipponen, M. H., O. J. Rojas, V. Pihlajaniemi, K. Lintinen, and M. Österberg. 2017. Calcium chelation of lignin from pulping spent liquor for water-resistant slow-release urea fertilizer systems. ACS Sustainable Chemistry and Engineering 5 (1):1054–61. doi:10.1021/acssuschemeng.6b02348.
  • Siró, I., and D. Plackett. 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17 (3):459–94. doi:10.1007/s10570-010-9405-y.
  • Songkhum, P., T. Wuttikhun, N. Chanlek, P. Khemthong, and K. Laohhasurayotin. 2018. Controlled release studies of boron and zinc from layered double hydroxides as the micronutrient hosts for agricultural application. Applied Clay Science 152 (November):311–22. Elsevier. doi:10.1016/j.clay.2017.11.028.
  • Sturikova, H., O. Krystofova, D. Huska, and V. Adam. 2018. Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials 349 (September 2017):101–10. Elsevier. doi:10.1016/j.jhazmat.2018.01.040.
  • Tammeorg, P., A. Simojoki, P. Mäkelä, F. L. Stoddard, L. Alakukku, and J. Helenius. 2014. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agriculture, Ecosystems and Environment 191:108–16. Elsevier B.V. doi:10.1016/j.agee.2014.01.007.
  • Tarafder, C., M. Daizy, M. Alam, M. Ali, R. Md, M. Islam, J. Islam, R. Ahommed, S. Md, M. Aly Saad Aly, et al. 2020. Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. American Chemical Society Omega 5 (37):23960–66. doi:10.1021/acsomega.0c03233.
  • Taran, N. Y., O. M. Gonchar, K. G. Lopatko, L. M. Batsmanova, M. V. Patyka, and M. V. Volkogon. 2014. The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Research Letters 9 (1):1–8. doi:10.1186/1556-276X-9-289.
  • Tiede, K., S. Foss Hanssen, P. Westerhoff, G. J. Fern, S. M. Hankin, R. J. Aitken, Q. Chaudhry, and A. B. A. Boxall. 2016. How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 10 (1):102–10. doi:10.3109/17435390.2015.1022888.
  • Tomaszewska, M., A. Jarosiewicz, and K. Karakulski. 2002. Physical and chemical characteristics of polymer coatings in CRF formulation. Desalination 146 (1–3):319–23. doi:10.1016/S0011-9164(02)00501-5.
  • Trenkel, T. 2013. Slow and controlled-release and stabilized fertilizers. Journal of Chemical Information and Modeling 53.
  • Trinh Thanh, H., K. Kushaari, A. S. Shuib, L. Ismail, and B. Azeem. 2015. Modelling the release of nitrogen from controlled release fertiliser: Constant and decay release. Biosystems Engineering 130:34–42. Elsevier Ltd. doi:10.1016/j.biosystemseng.2014.12.004.
  • Tripathi, D. K., V. Pratap Singh, S. Mohan Prasad, D. Kumar Chauhan, and N. Kishore Dubey. 2015. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Biochemistry 96 (Vi):189–98. Elsevier Ltd. doi:10.1016/j.plaphy.2015.07.026.
  • Usman, M., M. Farooq, A. Wakeel, A. Nawaz, S. Alam Cheema, H. Ur Rehman, I. Ashraf, and M. Sanaullah. 2020. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment 721: Elsevier B.V.:137778. doi:10.1016/j.scitotenv.2020.137778.
  • Vahdat, A., B. Ghasemi, and M. Yousefpour. 2020. Mechanical properties of the hydroxyapatite and magnetic nanocomposite of hydroxyapatite adsorbents. South African Journal of Chemical Engineering 33:90–94. Elsevier B.V. doi:10.1016/j.sajce.2020.05.007.
  • Varma Rajender, S. 2019. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. review-article. ACS Sustainable Chemistry & Engineering 7 (7):6458–70. American Chemical Society. doi:10.1021/acssuschemeng.8b06550.
  • Vejan, P., T. Khadiran, R. Abdullah, and N. Ahmad. 2021. Controlled release fertilizer: A review on developments, applications and potential in agriculture. Journal of Controlled Release 339:321–34. doi:10.1016/j.jconrel.2021.10.003.
  • Verma, Y., S. C. Datta, I. K. Mandal, and D. Sarkar. 2016. Effect of phosphorus loaded organically modified nanoclay-polymer composite on release and fixation of phosphorus and its uptake by wheat (Triticum aestivum L.). Journal of Pure & Applied Microbiology 10 (3):2299–306.
  • Vudjung, C., and S. Saengsuwan. 2018. Biodegradable IPN hydrogels based on pre-vulcanized natural rubber and cassava starch as coating membrane for environment-friendly slow-release urea fertilizer. Journal of Polymers and the Environment 26 (9):3967–80. Laboratory of Advanced Polymer and Rubber Materials (APRM), Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand. doi:10.1007/s10924-018-1274-8.
  • Wang, Y., C. Deng, K. Cota-Ruiz, J. R. Peralta-Videa, Y. Sun, S. Rawat, W. Tan, A. Reyes, J. A. Hernandez-Viezcas, G. Niu, et al. 2020. Improvement of nutrient elements and allicin content in green onion (allium fistulosum) plants exposed to CuO nanoparticles. Science of the Total Environment 725:138387. Elsevier B.V.:138387. doi:10.1016/j.scitotenv.2020.138387.
  • Wang, P., E. Lombi, F. Jie Zhao, and P. M. Kopittke. 2016. Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science 21 (8):699–712. Elsevier Ltd. doi:10.1016/j.tplants.2016.04.005.
  • Wang, X., S. Lü, C. Gao, X. Xu, Y. Wei, X. Bai, C. Feng, N. Gao, M. Liu, and L. Wu. 2014. Biomass-based multifunctional fertilizer system featuring controlled-release nutrient, water-retention and amelioration of soil. RSC Advances 4 (35):18382–90. doi:10.1039/c4ra00207e.
  • Wang, Z., X. Xie, J. Zhao, X. Liu, W. Feng, J. C. White, and B. Xing. 2012. Xylem- and phloem-based transport of CuO nanoparticles in maize (zea mays L.). Environmental Science and Technology 46 (8):4434–41. doi:10.1021/es204212z.
  • Wen, P., Z. Wu, Y. Han, G. Cravotto, J. Wang, and B. Ce Ye. 2017. Microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water-retention capacity. ACS Sustainable Chemistry and Engineering 5 (8):7374–82. doi:10.1021/acssuschemeng.7b01721.
  • Werner Stephen, R. L., J. R. Jones, A. H. J. Paterson, R. H. Archer, and D. L. Pearce. 2007. Air-suspension particle coating in the food industry: Part I – State of the art. Powder Technology 171 (1):25–33. doi:10.1016/j.powtec.2006.08.014.
  • Wu, L., and M. Liu. 2008. Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydrate Polymers 72 (2):240–47. doi:10.1016/j.carbpol.2007.08.020.
  • Wu, Z., Y. Zhao, I. Kaleem, and C. Li. 2011. Preparation of calcium-alginate microcapsuled microbial fertilizer coating Klebsiella Oxytoca rs-5 and its performance under salinity stress. European Journal of Soil Biology 47 (2):152–59. Elsevier Masson SAS. doi:10.1016/j.ejsobi.2010.11.008.
  • Xia, H., S. Xu, and L. Yang. 2017. Efficient conversion of wheat Straw into furan compounds, bio-oils, and phosphate fertilizers by a combination of hydrolysis and catalytic pyrolysis. RSC Advances 7 (3):1200–05. Royal Society of Chemistry. doi:10.1039/c6ra27072g.
  • Xie, L., M. Liu, B. Ni, X. Zhang, and Y. Wang. 2011. Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chemical Engineering Journal 167 (1):342–48. Elsevier B.V. doi:10.1016/j.cej.2010.12.082.
  • Xing, K., X. Zhu, X. Peng, and S. Qin. 2015. Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agronomy for Sustainable Development 35 (2):569–88. doi:10.1007/s13593-014-0252-3.
  • Xu, X., B. Bai, H. Wang, and Y. Suo. 2017. A near-infrared and temperature-responsive pesticide release Platform through core-shell polydopamine@PNIPAm nanocomposites. ACS Applied Materials and Interfaces 9 (7):6424–32. doi:10.1021/acsami.6b15393.
  • Xu, T., C. Ma, Z. Aytac, X. Hu, K. Woei Ng, J. C. White, and P. Demokritou. 2020. Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustainable Chemistry and Engineering 8 (25):9537–48. doi:10.1021/acssuschemeng.0c02696.
  • Yahya Mohd Adib, Z. A.-Q., and C. W. Z. Ngah. 2015. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews 46:218–35. Elsevier. doi:10.1016/j.rser.2015.02.051.
  • Yang, Y., Z. Tong, Y. Geng, Y. Li, and M. Zhang. 2013. Biobased polymer composites derived from Corn Stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers. Journal of Agricultural and Food Chemistry 61 (34):8166–74. doi:10.1021/jf402519t.
  • Yao, Y., B. Gao, J. Chen, and L. Yang. 2013. Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environmental Science and Technology 47 (15):8700–08. doi:10.1021/es4012977.
  • Yin, J., Y. Wang, and L. M. Gilbertson. 2018. Opportunities to advance sustainable design of nano-enabled agriculture identified through a literature review. Environmental Science: Nano 5 (1):11–26. doi:10.1039/c7en00766c.
  • Younis, M. E., H. M. M. Abdel-Aziz, and Y. M. Heikal. 2019. Nanopriming technology enhances vigor and mitotic index of aged Vicia faba seeds using chemically synthesized silver nanoparticles. South African Journal of Botany 125:393–401. South African Association of Botanists. doi:10.1016/j.sajb.2019.08.018.
  • Zakzeski, J., P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews 110 (6):3552–99. doi:10.1021/cr900354u.
  • Zhang, Y., X. Liang, X. Yang, H. Liu, and J. Yao. 2014. An eco-friendly Slow-Release Urea Fertilizer Based on Waste Mulberry Branches for Potential Agriculture and horticulture applications. ACS Sustainable Chemistry & Engineering 2 (7):1871–78. doi:10.1021/sc500204z.
  • Zhang, L., C. Yan, Q. Guo, J. Zhang, and J. Ruiz-Menjivar. 2018. The impact of agricultural chemical inputs on environment: Global evidence from informetrics analysis and visualization. International Journal of Low-Carbon Technologies 13 (4):338–52. doi:10.1093/ijlct/cty039.
  • Zhong, K., Z. Tao Lin, X. Liang Zheng, G. Biao Jiang, Y. Sheng Fang, X. Yun Mao, and Z. Wen Liao. 2013. Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydrate Polymers 92 (2):1367–76. Elsevier Ltd.:1367–1376. doi:10.1016/j.carbpol.2012.10.030.
  • Zhou, Z., C. Du, T. Li, Y. Shen, Y. Zeng, J. Du, and J. Zhou. 2015. Biodegradation of a biochar-modified waterborne polyacrylate membrane coating for controlled-release fertilizer and its effects on soil bacterial community profiles. Environmental Science and Pollution Research 22 (11):8672–82. doi:10.1007/s11356-014-4040-z.
  • Zulfiqar, F., M. Navarro, M. Ashraf, N. Aisha Akram, and S. Munné-Bosch. 2019. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science 289:110270. doi:10.1016/j.plantsci.2019.110270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.