59
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Retention Vs Incorporation of Cereal Residues on Soil Health: A Comprehensive Review

, , , &
Pages 1883-1902 | Received 24 Oct 2022, Accepted 05 Mar 2024, Published online: 15 Mar 2024

References

  • Amanuel, W., F. Yimer, and E. Karltun. 2018. Soil organic carbon variation in relation to land use changes: The case of birr watershed, upper Blue Nile River Basin, Ethiopia. Journal of Ecology and Environment 42 (1):1–11. doi:10.1186/s41610-018-0076-1.
  • Andini, A., S. Bonnet, P. Rousset, and U. Hasanudin. 2018. Impact of open burning of crop residues on air pollution and climate change in Indonesia. Current Science 115 (12):2259. doi:10.18520/cs/v115/i12/2259-2266.
  • Azhar, R., M. Zeeshan, and K. Fatima. 2019. Crop residue open field burning in Pakistan; multi-year high spatial resolution emission inventory for 2000–2014. Atmospheric Environment 208:20–33. doi:10.1016/j.atmosenv.2019.03.031.
  • Aziz, I., N. Bangash, T. Mahmood, and K. R. Islam. 2015. Impact of no-till and conventional tillage practices on soil chemical properties.Pakistan. Journal of Botany 47 (1):297–303.
  • Baker, J. M., T. E. Ochsner, R. T. Venterea, and T. J. Griffis. 2007. Tillage and soil carbon sequestration-what do we really know? Agriculture, Ecosystems and Environment 118 (1–4):1–5. doi:10.1016/j.agee.2006.05.014.
  • Baudron, F., S. Delmotte, M. Corbeels, J. M. Herrera, and P. Tittonell. 2015. Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid-Zambezi Valley, Zimbabwe. Agricultural Systems 134:97–106. doi:10.1016/j.agsy.2014.03.002.
  • Baudron, F., P. Tittonell, M. Corbeels, P. Letourmy, and K. E. Giller. 2012. Comparative performance of conservation agriculture and current smallholder farming practices in semi-arid Zimbabwe. Field Crops Research 132:117–28. doi:10.1016/j.fcr.2011.09.008.
  • Bhagat, P., S. K. Gosal, and C. B. Singh. 2016. Effect of mulching on soil environment, microbial flora and growth of potato under field conditions.Indian. Journal of Agricultural Research 50 (6):542–48. doi:10.18805/ijare.v50i6.6671.
  • Bhattacharyya, R., T. Das, S. Das, A. Dey, A. Patra, R. Agnihotri, A. Ghosh, and A. Sharma. 2019. Four years of conservation agriculture affects topsoil aggregate-associated 15nitrogen but not the 15nitrogen use efficiency by wheat in a semi-arid climate. Geoderma 337:333–40. doi:10.1016/j.geoderma.2018.09.036.
  • Biswas, B., N. Pandey, Y. Bisht, R. Singh, J. Kumar, and T. Bhaskar. 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology 237:57–63. doi:10.1016/j.biortech.2017.02.046.
  • Bossuyt, H., J. Six, and P. F. Hendrix. 2006. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon. Geoderma 130 (1–2):14–25. doi:10.1016/j.geoderma.2005.01.005.
  • Boulal, H., H. Gómez-Macpherson, J. A. Gómez, and L. Mateos. 2011. Effect of soil management and traffic on soil erosion in irrigated annual crops. Soil and Tillage Research 115:62–70. doi:10.1016/j.still.2011.07.003.
  • Butterly, C. R., X. Wang, P. Sale, G. Li, and C. Tang. 2021. Liming effect of non-legume residues promotes the biological amelioration of soil acidity via nitrate uptake. Plant and Soil 464 (1–2):63–73. doi:10.1007/s11104-021-04937-6.
  • Caesar-TonThat, T. C., U. M. Sainju, S. F. Wright, W. L. Shelver, R. L. Kolberg, and M. West. 2010. Long-term tillage and cropping effects on microbiological properties associated with aggregation in a semi-arid soil. Biology and Fertility of Soils 47 (2):157–65. doi:10.1007/s00374-010-0508-2.
  • Cardoso, E. J. B. N., R. L. F. Vasconcellos, D. Bini, M. Y. H. Miyauchi, C. A. D. Santos, and P. R. L. Alves, … M. A. Nogueira. 2013. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola 70 (4):274–89. doi:10.1590/S0103-90162013000400009.
  • Chan, K. Y., and D. P. Heenan. 2006. Earthworm population dynamics under conservation tillage systems in south-eastern Australia. Soil Research 44 (4):425–431. doi:10.1071/SR05144.
  • Chatterjee, D., S. C. Datta, and K. M. Manjaiah. 2014. Fractions, uptake and fixation capacity of phosphorus and potassium in three contrasting soil orders. Journal of Soil Science and Plant Nutrition 14 (3):640–56. doi:10.4067/S0718-95162014005000051.
  • Chen, H., X. Chen, Y. Qin, J. Wei, and H. Liu. 2017. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity. Bioresource Technology 228:241–249. doi:10.1016/j.biortech.2016.12.074.
  • Chen, H., Y. Ding, and A. Lapkin. 2009. Rheological behaviour of nanofluids containing tube / rod-like nanoparticles. Powder Technology 194 (1–2):132–41. doi:10.1016/j.powtec.2009.03.038.
  • Chenu, C., D. A. Angers, P. Barré, D. Derrien, D. Arrouays, and J. Balesdent. 2019. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research 188:41–52. doi:10.1016/j.still.2018.04.011.
  • Chowdhury, F. I., I. Barua, A. I. Chowdhury, V. Resco de Dios, and M. S. Alam. 2020. Agroforestry shows higher potential than reforestation for soil restoration after slash-and-burn: A case study from Bangladesh. Geology, Ecology, and Landscapes 6 (1):1–7. doi:10.1080/24749508.2020.1743528.
  • Clay, D., R. Alverson, J. M. Johnson, D. L. Karlen, S. Clay, and M. Q. Wang, … S. Westhoff. 2019. Crop residue management challenges: A special issue overview. Agronomy Journal 111 (1):1. doi:10.2134/agronj2018.10.0657.
  • Colombi, T., and T. Keller. 2019. Developing strategies to recover crop productivity after soil compaction—A plant eco-physiological perspective. Soil and Tillage Research 191:156–161. doi:10.1016/j.still.2019.04.008.
  • Damon, P. M., B. Bowden, T. Rose, and Z. Rengel. 2014. Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biology and Biochemistry 74:127–137. doi:10.1016/j.soilbio.2014.03.003.
  • Das, B., P. V. Bhave, S. P. Puppala, K. Shakya, B. Maharjan, and R. M. Byanju. 2020. A model-ready emission inventory for crop residue open burning in the context of Nepal. Environmental Pollution 266:115069. doi:10.1016/j.envpol.2020.115069.
  • De Blasi, G., A. De Boni, and R. Roma. 2002. An application of ‘quick’ cluster analysis in order to detect intensive/extensive farming areas. In 7. International meeting on soils with mediterranean type of climate (selected papers), ed. P. Zdruli, P. Steduto, and S. Kapur, 379–89. Bari: CIHEAM. http://om.ciheam.org/om/pdf/a50/04002052.pdf.
  • Dequiedt, S., N. P. A. Saby, M. Lelievre, C. Jolivet, J. Thioulouse, and B. Toutain, … D. Arrouays, A. Bispo, P. Lemanceau, L. Ranjard. 2011. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Global Ecology and Biogeography 20 (4):641–652. doi:10.1111/j.1466-8238.2010.00628.x.
  • Dikgwatlhe, S. B., Z. D. Chen, R. Lal, H. L. Zhang, and F. Chen. 2014. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil and Tillage Research 144:110–118. doi:10.1016/j.still.2014.07.014.
  • Duong, T. T. T. 2009.Dynamics of plant residue decomposition and nutrient release.Master’s thesis.The. University of Adelaide, Australia. https://digital.library.adelaide.edu.au/dspace/bitstream/2440/59393/10/02whole.pdf
  • Eden, M., J. Bachmann, C. Cavalaris, S. Kostopoulou, M. Kozaiti, and J. Böttcher. 2020. Soil structure of a clay loam as affected by long-term tillage and residue management. Soil and Tillage Research 204:104734. doi:10.1016/j.still.2020.104734.
  • Errouissi, F., S. B. Moussa-Machraoui, M. Ben-Hammouda, and S. Nouira. 2011. Soil invertebrates in durum wheat (triticum durum L.) cropping system under Mediterranean semi arid conditions: A comparison between conventional and no-tillage management. Soil and Tillage Research 112 (2):122–132. doi:10.1016/j.still.2010.12.004.
  • Farooq, M., and K. H. Siddique. 2015. Conservation agriculture: Concepts, brief history, and impacts on agricultural systems. In Conservation agriculture, ed. M. Farooq and K. H. Siddique, 3–17. New York City, USA: Springer, Cham.
  • Gál, A., T. J. Vyn, E. Michéli, E. J. Kladivko, and W. W. McFee. 2007. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil and Tillage Research 96 (1–2):42–51. doi:10.1016/j.still.2007.02.007.
  • Ghosh, P. K., A. Das, R. Saha, E. Kharkrang, A. K. Tripathi, G. C. Munda, and S. V. Ngachan. 2010. Conservation agriculture towards achieving food security in North East India. Current Science 99:915–22.
  • Gorbunova, A. Y., D. I. Korobushkin, N. V. Kostina, M. I. Degtyarev, K. B. Gongalsky, and A. S. Zaitsev. 2020. Level of soil moisture determines the ability of Eiseniafetida to re-incorporate carbon from decomposed rice straw into the soil. European Journal of Soil Biology 99:103209. doi:10.1016/j.ejsobi.2020.103209.
  • Goswami, S. B., R. Mondal, and S. K. Mandi. 2020. Crop residue management options in rice–rice system: A review. Archives of Agronomy and Soil Science 66 (9):1218–34. doi:10.1080/03650340.2019.1661994.
  • Govaerts, B., M. Mezzalama, K. D. Sayre, J. Crossa, K. Lichter, and V. Troch, … K. Vanherck, P. De Corte, J. Deckers. 2008. Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Applied Soil Ecology 38 (3):197–210. doi:10.1016/j.apsoil.2007.10.009.
  • Govaerts, B., N. Verhulst, A. Castellanos-Navarrete, K. D. Sayre, J. Dixon, and L. Dendooven. 2009. Conservation agriculture and soil carbon sequestration: Between myth and farmer reality. Critical Reviews in Plant Science 28 (3):97–122. doi:10.1080/07352680902776358.
  • Grzyb, A., A. Wolna-Maruwka, and A. Niewiadomska. 2020. Environmental factors affecting the mineralization of crop residues. Agronomy 10 (12):1951. doi:10.3390/agronomy10121951.
  • Guillot, E., P. Hinsinger, L. Dufour, J. Roy, and I. Bertrand. 2019. With or without trees: Resistance and resilience of soil microbial communities to drought and heat stress in a Mediterranean agroforestry system. Soil Biology and Biochemistry 129:122–135. doi:10.1016/j.soilbio.2018.11.011.
  • Guopeng, Z. H. O. U., C. A. O. Weidong, B. A. I. Jinshun, X. U. Changxu, Z. E. N. G. Naohua, G. A. O. Songjuan, and D. O. U. Fugen. 2020. Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen (N) and reduce carbon and N losses: An incubation study. Pedosphere 30 (5):661–70. doi:10.1016/S1002-0160(19)60845-3.
  • Hellin, J., O. Erenstein, T. Beuchelt, C. Camacho, and D. Flores. 2013. Maize stover use and sustainable crop production in mixed crop–livestock systems in Mexico. Field Crops Research 153:12–21. doi:10.1016/j.fcr.2013.05.014.
  • He, J., Y. Shi, J. Zhao, and Z. Yu. 2019. Strip rotary tillage with a two-year subsoiling interval enhances root growth and yield in wheat. Scientific Reports 9 (1):1–13. doi:10.1038/s41598-019-48159-4.
  • Hussain, S., S. Hussain, R. Guo, M. Sarwar, X. Ren, and D. Krstic, … M. A. El-Esawi. 2021. Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants 10 (10):2001. doi:10.3390/plants1010200110.3390/plants10102001.
  • Jiang, X., A. L. Wright, J. Wang, and Z. Li. 2011. Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates. Catena 87 (2):276–280. doi:10.1016/j.catena.2011.06.011.
  • Jiang, D., D. Zhuang, J. Fu, Y. Huang, and K. Wen. 2012. Bioenergy potential from crop residues in China: Availability and distribution. Renewable and Sustainable Energy Reviews 16 (3):1377–1382. doi:10.1016/j.rser.2011.12.012.
  • Jourgholami, M., K. Fathi, and E. R. Labelle. 2020. Effects of litter and straw mulch amendments on compacted soil properties and Caucasian alder (alnussubcordata) growth. New Forests 51 (2):349–65. doi:10.1007/s11056-019-09738-5.
  • Kaletnik, G., I. Honcharuk, and Y. Okhota. 2020. The waste-free production development for the energy autonomy formation of Ukrainian agricultural enterprises. Journal of Environmental Management & Tourism 11 (3):513–522. doi:10.14505//jemt.v11.3(43).02.
  • Kan, Z. R., A. L. Virk, G. Wu, J. Y. Qi, S. T. Ma, and X. Wang, … H. L. Zhang. 2020. Priming effect intensity of soil organic carbon mineralization under no-till and residue retention. Applied Soil Ecology 147:103445. doi:10.1016/j.apsoil.2019.103445.
  • Karlen, D. L., and C. A. Cambardella. 2020. Conservation strategies for improving soil quality and organic matter storage. Structure and Organic Matter Storage in Agricultural Soils 1:395–420.
  • Keck, M., and D. T. Hung. 2019. Burn or bury? A comparative cost–benefit analysis of crop residue management practices among smallholder rice farmers in northern Vietnam. Sustainability Science 14 (2):375–389. doi:10.1007/s11625-018-0592-z.
  • Kozak, J. A., L. R. Ahuja, T. R. Green, and L. Ma. 2007. Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi‐arid agriculture. Hydrological processes 21 (2):229–41. doi:10.1002/hyp.6235.
  • Kraut-Cohen, J., A. Zolti, L. Shaltiel-Harpaz, E. Argaman, R. Rabinovich, S. J. Green, and D. Minz. 2020. Effects of tillage practices on soil microbiome and agricultural parameters. Science of the Total Environment 705:135791. doi:10.1016/j.scitotenv.2019.135791.
  • Kroulík, M., F. Kumhála, J. Hůla, and I. Honzík. 2009. The evaluation of agricultural machines field trafficking intensity for different soil tillage technologies. Soil and Tillage Research 105 (1):171–75. doi:10.1016/j.still.2009.07.004.
  • Kuang, Y., L. Chen, J. Zhai, S. Zhao, Q. Xiao, K. Wu, and F. Jiang. 2021. Microstructure, thermal conductivity, and flame retardancy of konjacglucomannan based aerogels. Polymers 13 (2):258. doi:10.3390/polym13020258.
  • Kumar, R., B. C. Deka, and N. Kumawat. 2022. Production potential, quality and soil health of newly introduced baby corn as influenced by best management practices in eastern himalayas. Journal of Plant Nutrition 45 (12):1866–83. doi:10.1080/01904167.2022.2027967.
  • Kumar, R., M. Kumar, A. Kumar, and A. Pandey. 2015. Productivity, profitability, nutrient uptake, and soil health as influenced by establishment methods and nutrient management practices in transplanted rice (oryza sativa) under hill ecosystem of Northeast India. Indian Journal of Agricultural Sciences 85 (5):634–39. doi:10.56093/ijas.v85i5.48492.
  • Kumar, A., K. K. Kushwaha, S. Singh, Y. S. Shivay, M. C. Meena, and L. Nain. 2019. 2019a.Effect of paddy straw burning on soil microbial dynamics in sandy loam soil of Indo-Gangetic plains. Environmental Technology & Innovation 16:100469. doi:10.1016/j.eti.2019.100469.
  • Kumar, R., J. S. Mishra, K. K. Rao, B. P. Bhatt, K. K. Hazra, H. Hans, and S. Mondal. 2019. Sustainable intensification of rice fallows of Eastern India with suitable winter crop and appropriate crop establishment technique. Environmental Science and Pollution Research 26 (28):29409–23. doi:10.1007/s11356-019-06063-4.
  • Kumar, R., J. S. Mishra, K. K. Rao, S. Mondal, K. K. Hazra, J. S. Choudhary, H. Hans, and B. P. Bhatt. 2020. Crop rotation and tillage management options for sustainable intensification of rice-fallow agro-ecosystem in eastern India. Scientific Reports 10 (1):11146. doi:10.1038/s41598-020-67973-9.
  • Kushwah, S. S., D. D. Reddy, J. Somasundaram, S. Srivastava, and R. S. Khamparia. 2016. Crop residue retention and nutrient management practices on stratification of phosphorus and soil organic carbon in the soybean–wheat system in vertisols of central India. Communications in Soil Science and Plant Analysis 47 (21):2387–2395. doi:10.1080/00103624.2016.1243703.
  • Lal, R. 2007. Anthropogenic influences on world soils and implications to global food security. Advances in Agronomy 93:69–93. doi:10.1016/S0065-2113(06)93002-8.
  • Lal, R. 2009. Challenges and opportunities in soil organic matter research. European Journal of Soil Science 60 (2):158–169. doi:10.1111/j.1365-2389.2008.01114.x.
  • Lal, R., ed. 2018. Soil quality and food security: The global perspective. In Soil quality and soil erosion, 3–16. Boca Raton, Florida, USA: CRC Press.
  • Larkin, R. P. 2015. Soil health paradigms and implications for disease management. Annual Review of Phytopathology 53 (1):199–221. doi:10.1146/annurev-phyto-080614-120357.
  • Larsen, R. J., B. L. Beres, R. E. Blackshaw, and R. J. Graf. 2018. Extending the growing season: Winter cereals in western Canada. Canadian Journal of Plant Science 98 (2):267–77. doi:10.1139/cjps-2017-0278.
  • Lehmann, J., D. A. Bossio, I. Kögel-Knabner, and M. C. Rillig. 2020. The concept and future prospects of soil health. Nature Reviews Earth and Environment 1 (10):544–53. doi:10.1038/s43017-020-0080-8.
  • Li, Q., X. Guo, L. Chen, Y. Li, D. Yuan, B. Dai, and S. Wang. 2017. Investigating the spectral characteristic and humification degree of dissolved organic matter in saline-alkali soil using spectroscopic techniques. Frontiers of Earth Science 11 (1):76–84. doi:10.1007/s11707-016-0568-1.
  • Li, Y., Z. Li, S. Cui, and Q. Zhang. 2020. Trade-off between soil pH, bulk density and other soil physical properties under global no-tillage agriculture. Geoderma 361:114099. doi:10.1016/j.geoderma.2019.114099.
  • Lin, Y., G. Ye, Y. Kuzyakov, D. Liu, J. Fan, and W. Ding. 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry 134:187–196. doi:10.1016/j.soilbio.2019.03.030.
  • Li, C. F., L. X. Yue, Z. K. Kou, Z. S. Zhang, J. P. Wang, and C. G. Cao. 2012. Short-term effects of conservation management practices on soil labile organic carbon fractions under a rape–rice rotation in central China. Soil and Tillage Research 119:31–37. doi:10.1016/j.still.2011.12.005.
  • Li, Y., Q. Zhang, Y. Cai, Q. Yang, and S. X. Chang. 2020. Minimum tillage and residue retention increase soil microbial population size and diversity: Implications for conservation tillage. Science of the Total Environment 716:137164. doi:10.1016/j.scitotenv.2020.137164.
  • López-Fando, C., and M. T. Pardo. 2009. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil and Tillage Research 104 (2):278–84. doi:10.1016/j.still.2009.03.005.
  • Lou, Y., A. S. Davis, and A. C. Yannarell. 2016. Interactions between allelochemicals and the microbial community affect weed suppression following cover crop residue incorporation into soil. Plant and Soil 399 (1–2):357–71. doi:10.1007/s11104-015-2698-8.
  • Lou, Y., W. Liang, M. Xu, X. He, Y. Wang, and K. Zhao. 2011. Straw coverage alleviates seasonal variability of the topsoil microbial biomass and activity. Catena 86 (2):117–20. doi:10.1016/j.catena.2011.03.006.
  • Miltner, A., P. Bombach, B. Schmidt-Brücken, and M. Kästner. 2012. SOM genesis: Microbial biomass as a significant source. Biogeochemistry 111 (1):41–55. doi:10.1007/s10533-011-9658-z.
  • Mondal, S., J. S. Mishra, S. P. Poonia, R. Kumar, R. Dubey, and S. Kumar, … A. McDonald. 2021. Can yield, soil C and aggregation be improved under long‐term conservation agriculture in the eastern I ndo‐G angetic plain of I ndia? European Journal of Soil Science 72 (4):1742–61. doi:10.1111/ejss.13092.
  • Naudin, K., G. Bruelle, P. Salgado, E. Penot, E. Scopel, M. Lubbers, and K. E. andGiller. 2015. Trade-offs around the use of biomass for livestock feed and soil cover in dairy farms in the Alaotra lake region of Madagascar. Agricultural Systems 134:36–47. doi:10.1016/j.agsy.2014.03.003.
  • Neina, D. 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science 2019:1–9. doi:10.1155/2019/5794869.
  • Nortjé, G. P., and M. C. Laker. 2021. Soil fertility trends and management in conservation agriculture: A South African perspective. South African Journal of Plant and Soil 38 (3):247–257. doi:10.1080/02571862.2021.1896039.
  • Novelli, L. E., O. P. Caviglia, and G. Piñeiro. 2017. Increased cropping intensity improves crop residue inputs to the soil and aggregate-associated soil organic carbon stocks. Soil and Tillage Research 165:128–136. doi:10.1016/j.still.2016.08.008.
  • Oanh, N. T. K., D. A. Permadi, P. K. Hopke, K. R. Smith, N. P. A. D. Dong, and A. N. 2018. Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015. Atmospheric Environment 187:163–173. doi:10.1016/j.atmosenv.2018.05.061.
  • Oshunsanya, S. O. 2018. Introductory chapter: Relevance of soil pH to agriculture. In Soil pH for nutrient availability and crop performance, IntechOpen. 10.5772/intechopen.82551
  • Otero-Jimenez, V., J. Del PilarCarreno-Carreno, E. Barreto-Hernandez, J. D. van Elsas, and D. Uribe-Velez. 2021. Impact of rice straw management strategies on rice rhizospheremicrobiomes. Applied Soil Ecology 167:104036. doi:10.1016/j.apsoil.2021.104036.
  • Page, K. L., Y. P. Dang, and R. C. Dalal. 2020. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Frontiers in Sustainable Food Systems 4:31. doi:10.3389/fsufs.2020.00031.
  • Pandey, B. P., and T. P. Kandel. 2019. Growth and yield response of wheat to tillage, rice residue and weed management under rice–wheat cropping System.Global. Global Journal of Agricultural and Allied Sciences 1 (1):43–48. doi:10.35251/gjaas.2019.005.
  • Parihar, C. M., A. K. Singh, S. L. Jat, A. Dey, H. S. Nayak, and B. N. Mandal, … O. P. Yadav. 2020. Soil quality and carbon sequestration under conservation agriculture with balanced nutrition in intensive cereal-based system. Soil and Tillage Research 202:104653. doi:10.1016/j.still.2020.104653.
  • Pelosi, C., B. Pey, M. Hedde, G. Caro, Y. Capowiez, M. Guernion, and D. andCluzeau. 2014. Reducing tillage in cultivated fields increases earthworm functional diversity. Applied Soil Ecology 83:79–87. doi:10.1016/j.apsoil.2013.10.005.
  • Pinheiro, P. L., S. Recous, G. Dietrich, D. A. Weiler, R. L. Giovelli, A. P. Mezzalira, and S. J. Giacomini. 2018. Straw removal reduces the mulch physical barrier and ammonia volatilization after urea application in sugarcane. Atmospheric Environment 194:179–187. doi:10.1016/j.atmosenv.2018.09.031.
  • Plaza-Bonilla, D., J. L. Arrúe, C. Cantero-Martínez, R. Fanlo, A. Iglesias, and J. Álvaro-Fuentes. 2015. Carbon management in dryland agricultural systems.A review.Agronomy for sustainable development. Agronomy for Sustainable Development 35 (4):1319–34. doi:10.1007/s13593-015-0326-x.
  • Poirier, V., D. A. Angers, P. Rochette, M. H. Chantigny, N. Ziadi, G. Tremblay, and J. Fortin. 2009. Interactive effects of tillage and mineral fertilization on soil carbon profiles. Soil Science Society of America Journal 73 (1):255–61. doi:10.2136/sssaj2008.0006.
  • Prescott, C. E. 2010. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101 (1):133–49. doi:10.1007/s10533-010-9439-0.
  • Ram, H., V. Dadhwal, K. K. Vashist, and H. Kaur. 2013. Grain yield and water use efficiency of wheat (Triticumaestivum L.) in relation to irrigation levels and rice straw mulching in North West India. Agricultural Water Management 128:92–101. doi:10.1016/j.agwat.2013.06.011.
  • Ramos, F. T., E. F. D. C. Dores, O. L. D. S. Weber, D. C. Beber, J. H. CampeloJr, and J. C. D. S. Maia. 2018. Soil organic matter doubles the cation exchange capacity of tropical soil under no‐till farming in Brazil. Journal of the Science of Food and Agriculture 98 (9):3595–602. doi:10.1002/jsfa.8881.
  • Ray, D. K., P. C. West, M. Clark, J. S. Gerber, A. V. Prishchepov, and S. Chatterjee. 2019. Climate change has likely already affected global food production. Public Library of Science ONE 14 (5):e0217148. doi:10.1371/journal.pone.0217148.
  • Raza, M. H., M. Abid, T. Yan, S. A. A. Naqvi, S. Akhtar, and M. Faisal. 2019. Understanding farmers’ intentions to adopt sustainable crop residue management practices: A structural equation modeling approach. Journal of Cleaner Production 227:613–623. doi:10.1016/j.jclepro.2019.04.244.
  • Reddy, N., and Y. Yang. 2006. Properties of high-quality long natural cellulose fibers from rice straw. Journal of Agricultural and Food Chemistry 54 (21):8077–8081. doi:10.1021/jf0617723.
  • Reicosky, D. C., W. D. Kemper, G. Langdale, C. L. Douglas, and P. E. Rasmussen. 1995. Soil organic matter changes resulting from tillage and biomass production. Journal of Soil and Water Conservation 50 (3):253–61.
  • Ríos-Badrán, I. M., I. Luzardo-Ocampo, J. F. García-Trejo, J. Santos-Cruz, and C. Gutiérrez-Antonio. 2020. Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy 145:500–07. doi:10.1016/j.renene.2019.06.048.
  • Robertson, F., R. Armstrong, D. Partington, R. Perris, I. Oliver, and C. Aumann, … D. Crawford, D. Rees. 2015. Effect of cropping practices on soil organic carbon: Evidence from long-term field experiments in Victoria, Australia. Soil Research 53 (6):636–646. doi:10.1071/SR14227.
  • Rufino, M. C., J. Dury, P. Tittonell, M. T. Van Wijk, M. Herrero, and S. Zingore, … K. E. Giller. 2011. Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agricultural Systems 104 (2):175–90. doi:10.1016/j.agsy.2010.06.001.
  • Salem, H. M., C. Valero, M. M. Ángel, R. M. Gil, and L. L. Silva. 2015. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma 237-238:60–70. doi:10.1016/j.geoderma.2014.08.014.
  • Sapkota, T. B., M. L. Jat, J. P. Aryal, R. K. Jat, and A. Khatri-Chhetri. 2015. Climate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: Some examples from cereal systems of Indo-Gangetic Plains. Journal of Integrative Agriculture 14 (8):1524–1533. doi:10.1016/S2095-3119(15)61093-0.
  • Sarkar, S., M. Skalicky, A. Hossain, M. Brestic, S. Saha, and S. Garai, … K. Ray, K. Brahmachari. 2020. Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability 12 (23):9808. doi:10.3390/su12239808.
  • Saurabh, K., K. K. Rao, J. S. Mishra, R. Kumar, S. P. Poonia, and S. K. Samal, … R. K. Malik. 2021. Influence of tillage based crop establishment and residue management practices on soil quality indices and yield sustainability in rice-wheat cropping system of Eastern Indo-Gangetic Plains. Soil and Tillage Research 206:104841. doi:10.1016/j.still.2020.104841.
  • Shahane, A. A., and Y. S. Shivay. 2016. Cereal residues-not a waste until we waste it: A review. International Journal of Bio-Resource & Stress Management 7 (1):162–173. doi:10.23910/IJBSM/2016.7.1.1401b.
  • Shen, Y., N. McLaughlin, X. Zhang, M. Xu, and A. Liang. 2018. Effect of tillage and crop residue on soil temperature following planting for a black soil in Northeast China. Scientific Reports 8 (1):1–9. doi:10.1038/s41598-018-22822-8.
  • Sime, G., J. B. Aune, and H. Mohammed. 2015. Agronomic and economic response of tillage and water conservation management in maize, central rift valley in Ethiopia. Soil and Tillage Research 148:20–30. doi:10.1016/j.still.2014.12.001.
  • Singh, G., M. Dhakal, L. Yang, G. Kaur, K. W. Williard, J. E. Schoonover, and A. Sadeghpour. 2020. Decomposition and nitrogen release of cover crops in reduced‐and no‐tillage systems. Agronomy Journal 112 (5):3605–18. doi:10.1002/agj2.20268.
  • Singh, P., J. Heikkinen, E. Ketoja, V. Nuutinen, A. Palojärvi, and J. Sheehy, … K. Regina. 2015. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment. Science of the Total Environment 518:337–44. doi:10.1016/j.scitotenv.2015.03.027.
  • Singh, V., A. Srivastava, R. K. Singh, and U. S. Savita. 2011. Effect of tillage practices and residue management on soil quality and crop yield under maize (Zea mays)—based cropping system in Mollisol. Indian Journal of Agricultural Sciences 81 (11):1019.
  • Song, K., X. Zheng, W. Lv, Q. Qin, L. Sun, H. Zhang, and Y. Xue. 2019. Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. Scientific Reports 9 (1):1–11. doi:10.1038/s41598-019-40908-9.
  • Sun, R. 2010. Cereal straw as a resource for sustainable biomaterials and biofuels: Chemistry, extractives, lignins, hemicelluloses and cellulose. Amsterdam, The Netherlands: Elsevier.
  • Sun, B., X. Wang, F. Wang, Y. Jiang, and X. X. Zhang. 2013. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Applied and Environmental Microbiology 79 (11):3327–3335. doi:10.1128/AEM.00083-13.
  • Swella, G. B., P. R. Ward, K. H. M. Siddique, and K. C. Flower. 2015. Combinations of tall standing and horizontal residue affect soil water dynamics in rainfed conservation agriculture systems. Soil and Tillage Research 147:30–38. doi:10.1016/j.still.2014.11.004.
  • Thomason, J. E., M. C. Savin, K. R. Brye, and E. E. Gbur. 2017. Native earthworm population dominance after seven years of tillage, burning, and residue level management in a wheat-soybean, double-crop system. Applied Soil Ecology 120:211–218. doi:10.1016/j.apsoil.2017.08.014.
  • Turmel, M. S., A. Speratti, F. Baudron, N. Verhulst, and B. Govaerts. 2015. Crop residue management and soil health: A systems analysis. Agricultural Systems 134:6–16. doi:10.1016/j.agsy.2014.05.009.
  • Ullah, H., M. S. Elshikh, M. S. Alwahibi, J. Alkahtani, A. Muhammad, and S. Khalid. 2020. Nitrogen contents in soil, grains, and straw of hybrid rice differ when applied with different organic nitrogen sources. Agriculture 10 (9):386. doi:10.3390/agriculture10090386.
  • USDA 2022. World Agricultural Production, Circular Series, WAP 1-12. https://apps.fas.usda.gov/psdonline/circulars/production.pdf
  • Valbuena, D., O. Erenstein, S. Homann-KeeTui, T. Abdoulaye, L. Claessens, A. J. Duncan, B. Gérard, M. C. Rufino, N. Teufel, A. van Rooyen, et al. 2012. Conservation agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crops Research 132:175–84. doi:10.1016/j.fcr.2012.02.022.
  • VandenBygaart, A. J., and D. A. Angers. 2006. Towards accurate measurements of soil organic carbon stock change in agroecosystems. Canadian Journal of Soil Science 86 (3):465–71. doi:10.4141/S05-106.
  • van Es, H. M., and D. L. Karlen. 2019. Reanalysis validates soil health indicator sensitivity and correlation with long‐term crop yields. Soil Science Society of America Journal 83 (3):721–732. doi:10.2136/sssaj2018.09.0338.
  • Veliyeva, E. 2019. Technologies that save and grow. Black Sea Scientific Journal of Academic Research 50 (7):40–42.
  • Verhulst, N., B. Govaerts, E. Verachtert, M. Mezzalama, P. C. Wall, A. Chocobar, J. Deckers, and K. D. Sayre. 2010. Conservation agriculture, improving soil quality for sustainable production systems?. Lal, R., Stewart, B.A. 137–208. Boca Raton, FL, USA: CRC Press.
  • Verhulst, N., V. Nelissen, N. Jespers, H. Haven, K. D. Sayre, D. Raes, J. Deckers, and B. Govaerts. 2011. Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant and Soil 124:347–56. doi:10.1007/s11104-011-0728-8.
  • Wang, X., Z. Yang, X. Liu, G. Huang, W. Xiao, and L. Han. 2020. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Management 110:87–97. doi:10.1016/j.wasman.2020.05.018.
  • Yang, H., G. Wu, P. Mo, S. Chen, S. Wang, and Y. Xiao, … H. A. Ma, T. Wen, X. Guo, G. Fan. 2020. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (triticumaestivum L.). Soil and Tillage Research 197:104485. doi:10.1016/j.still.2019.104485.
  • Yin, S., M. Guo, X. Wang, H. Yamamoto, and W. Ou. 2021. Spatiotemporal variation and distribution characteristics of crop residue burning in China from 2001 to 2018. Environmental Pollution 268:115849. doi:10.1016/j.envpol.2020.115849.
  • Yin, T., C. Yan, Q. Liu, and W. He. 2020. No‐tillage combined with residue retention and plastic mulching improves maize yields in a cold semiarid region of northern China. European Journal of Soil Science 71 (6):1144–1156. doi:10.1111/ejss.12919.
  • Zhang, X., L. Kong, G. Song, and D. Chen. 2016. Adsorption of uranium onto modified rice straw grafted with oxygen-containing groups. Environmental Engineering Science 33 (12):942–50. doi:10.1089/ees.2015.0019.
  • Zhang, X., X. Xin, A. Zhu, W. Yang, J. Zhang, and S. Ding, … L. Mu, L. Shao. 2018. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil and Tillage Research 178:99–107. doi:10.1016/j.still.2017.12.020.
  • Zhao, Y., J. Zhang, C. Müller, and Z. Cai. 2018. Temporal variations of crop residue effects on soil N transformation depend on soil properties as well as residue qualities. Biology and Fertility of Soils 54 (5):659–669. doi:10.1007/s00374-018-1291-8.
  • Zou, X., W. Niu, J. Liu, Y. Li, B. Liang, L. Guo, and Y. Guan. 2017. Effects of residual mulch film on the growth and fruit quality of tomato (Lycopersiconesculentum mill.). Water, Air and Soil Pollution 228 (2):1–18. doi:10.1007/s11270-017-3255-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.