96
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanoparticles in Sustainable Agriculture: Recent Advances, Challenges, and Future Prospects

&
Pages 2181-2196 | Received 03 Aug 2023, Accepted 02 Apr 2024, Published online: 10 Apr 2024

References

  • Balamurugan, K. A. 2018. Lipid nano particulate drug delivery: An overview of the emerging trend. Pharmacology Innovation Journal 7:779–89.
  • Barros, C. H. N., and C. G. Biliaderis. 2018. Nanotechnology: A promising approach for delivery of nutraceuticals and bioactives. Biotechnology Advances 36 (3):865–77.
  • Bouwmeester, H., I. Lynch, H. J. Marvin, K. A. Dawson, M. Berges, D. Braguer, and C. Klein. 2011. Minimal analytical characterisation of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5 (1):1–11. doi:10.3109/17435391003775266.
  • Cennamo, N., A. Massaro, L. Zeni. 2014. Nano-biosensors: The fusion of nanotechnology with biomedical and biological sensing. Sensors 14 (11):19589–625.
  • Cheng, F., Y. Liu, Y. Zhang, and H. Hao. 2021. Nanotechnology in agriculture: A perspective on opportunities, challenges, and future directions. Journal of Agricultural and Food Chemistry 69 (10):2934–52.
  • Dimkpa, C. O., J. E. McLean, D. E. Latta, E. Manangón, D. W. Britt, W. P. Johnson, and A. J. Anderson. 2012. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research 14 (9):1125. doi:10.1007/s11051-012-1125-9.
  • Elbasyoni, I. S., S. Morsy, A. M. Abdelghany, M. Naser, A. M. Mashaheet, A. M. Abdallah, M. Hafez, K. Frels, and P. S. Baenziger. 2023. Nebraska winter wheat unexpected flowering in Egypt: New improvement opportunities. Agronomy journal 115 (2):698–712. doi:10.1002/agj2.21243.
  • Elmer, W. H., and J. C. White. 2018. The future of nanotechnology in plant nutrition: A review of the benefits and risks. Science of the Total Environment 642:1438–50.
  • FAO, IFAD, UNICEF, WFP, and WHO. 2021. The state of food security and nutrition in the World 2021. US: FAO.
  • Feng, J., Q. Zhang, Q. Liu, Z. Zhu, D. J. McClements, and S. M. Jafari. 2018. Application of nanoemulsions in formulation of pesticides. Applications Nanoemulsions Formula Pesticide.
  • Giraldo, J. P., H. Wu, G. M. Newkirk, S. Kruss, and M. P. Landry. 2020. Nanobiotechnology approaches for engineering smart plant sensors. Nature Nanotechnology 15 (3):195–204.
  • Gogos, A., and K. Knauer. 2021. Nanotechnology in sustainable agriculture: Recent developments, challenges, and future prospects. Journal of Environmental Management 280:111709.
  • Gogos, A., K. Knauer, and T. D. Bucheli. 2012. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry 60 (39):9781–92. doi:10.1021/jf302154y.
  • González-Morales, S., E. González-Muñoz, F. Cruz-Sosa, M. A. García-Sánchez, and E. Avilés-Berzunza. 2019. Effect of nitrogen nanoparticles on the growth and yield of maize under greenhouse conditions. Journal of Plant Nutrition 42 (12):1379–87.
  • Gottschalk, F., T. Sonderer, R. W. Scholz, and B. Nowack. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology 43 (24):9216–22. doi:10.1021/es9015553.
  • Guo, J., X. Liu, Y. Zhang, J. Shen, and L. Han. 2005. Effects of coated urea and urease/nitrification inhibitors on ammonia volatilization and nitrogen utilization in vegetable soil. Journal of Plant Nutrition 28 (5):917–32.
  • Hafez, M., A. A. Abdulla, A. E. Mohamed, and M. Rashad. 2022a. Influence of environmental-friendly bio-organic ameliorants on abiotic stress to sustainable agriculture in arid regions: A long term greenhouse study in northwestern Egypt. Journal of King Saud University-Sciencs 34 (6):102212. doi:10.1016/j.jksus.2022.102212.
  • Hafez, M., A. I. Popov, and M. Rashad. 2022b. Enhancing calcareous and saline soils fertility by. increasing organic matter decomposition and enzyme activities: An incubation study. Communications in Soil Science & Plant Analysis 53 (18):2447–59. doi:10.1080/00103624.2022.2071930.
  • Handy, R. D., G. Cornelis, T. Fernandes, O. Tsyusko, A. Decho, T. Sabo-Attwood, C. Metcalfe, J. Steevens, S. J. Klaine, and A. A. Koelmans. 2012. Ecotoxicity test methods for engineered nanomaterials: Practical experiences and recommendations from the bench. Environmental Toxicology and Chemistry 31 (1):15–31. doi:10.1002/etc.706.
  • Joshi, A., and A. Sharma. 2019. Nanoparticles and their potential application in agriculture: A review. Biological Agriculture & Horticulture 35 (2):79–98.
  • Kah, M., S. Beulke, K. Tiede, and T. Hofmann. 2013. Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology 43 (16):1823–67. doi:10.1080/10643389.2012.671750.
  • Khan, S., S. Ullah, and I. U. Din. 2018. Nanotechnology in agriculture: Current status, challenges, and future opportunities. Science Progress 101 (3):251–82.
  • Khodakovskaya, M. V., K. de Silva, A. S. Biris, E. Dervishi, and H. Villagarcia. 2012. Carbon nanotubes induce growth enhancement of tobacco cells. Agricultural Science & Technology Nano 6 (3):2128–35. doi:10.1021/nn204643g.
  • Khot, L. R., S. Sankaran, J. M. Maja, R. Ehsani, and E. W. Schuster. 2012. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection 35:64–70. doi:10.1016/j.cropro.2012.01.007.
  • Kookana, R. S., A. B. Boxall, P. T. Reeves, R. Ashauer, S. Beulke, Q. Chaudhry, G. Cornelis, T. F. Fernandes, J. Gan, M. Kah, et al. 2014. Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry 62 (19):4227–40. doi:10.1021/jf500232f.
  • Kumar, P., K. Khanna, and N. Gupta. 2018. Nanotechnology in food packaging: A review of emerging smart packaging solutions. Advances in Food and Nutrition Research 85:119–59.
  • Kumar, V., S. K. Yadav, and K. Yadav. 2018. Nanotechnology: A tool to enhance crop productivity and food security. Applied Soil Ecology 130:38–50.
  • Liu, Y., L. He, A. Mustapha, H. Li, Z. Q. Hu, and M. Lin. 2009. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology 107:1193–201. doi:10.1111/j.1365-2672.2009.04303.x.
  • Liu, R., and R. Lal. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514:131–39. doi:10.1016/j.scitotenv.2015.01.104.
  • Li, Q., X. Wang, Q. Lu, and Y. Chen. 2007. Biogenic nanoparticles for plant growth and protection. Trends in Plant Science 12 (7):342–47.
  • Li, Y., J. Zhu, Q. Li, and Y. Liu. 2013. Effects of nano-silica on the growth and some physiological characteristics of tomato under drought stress. Russian Journal of Plant Physiology 60 (6):786–93.
  • McClements, D. J. 2012. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 8 (6):1719–29. doi:10.1039/C2SM06903B.
  • Mirzaei, H. H., S. M. Hosseini, and M. Jafari. 2020. The potential of copper oxide nanoparticles as an effective fungicide against Rhizoctonia solani, the causal agent of root rot in plants. Journal of Plant Protection Research 60 (3):310–17.
  • Mishra, S., H. Singh, and S. S. Ray. 2019. Nanopesticides: Opportunities and challenges. Journal of Agricultural and Food Chemistry 67 (8):1847–54. doi:10.1021/acs.jafc.8b05647.
  • Mousavi, S. R., P. Rezvani Moghaddam, and A. Shahsavari. 2021. Nanoparticles in agriculture: Benefits and risks. Environmental Research 201:111587.
  • Muhammad, U., M. Farooq, A. Wakeel, A. Nawaz, S. A. Cheema, H. Rehman, I. Ashraf, and M. Sanaullah. 2020. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment 721 (15):137778. doi:10.1016/j.scitotenv.2020.137778.
  • Nowack, B., R. M. David, H. Fissan, H. Morris, J. A. Shatkin, and M. Stintz. 2018. Potential release scenarios for carbon nanotubes used in composites. Environment International 114:48–57.
  • Nowack, B., R. M. David, H. Fissan, H. Morris, J. A. Shatkin, M. Stintz, and R. Zepp. 2013. Potential release scenarios for carbon nanotubes used in composites. Environmental International 59:1–11. doi:10.1016/j.envint.2013.04.003.
  • Peters, R. J., A. G. Oomen, and P. C. Tromp. 2016. Focusing the safety assessment of nanomaterials in food and food production environments: A review. Regulatory Toxicology and Pharmacology 80:256–67.
  • Pingarrón, J. M., P. Yáñez-Sedeño, and A. González-Cortés. 2008. Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta 53 (19):5848–66. doi:10.1016/j.electacta.2008.03.005.
  • Rai, M., A. Yadav, and A. Gade. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27 (1):76–83. doi:10.1016/j.biotechadv.2008.09.002.
  • Raliya, R., and J. C. Tarafdar. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (cyamopsis tetragonoloba L.). Agricultural Research 2 (1):48–57. doi:10.1007/s40003-012-0049-z.
  • Rashad, M., M. Hafez, A. Popov, and H. Gaber. 2023. Toward sustainable agriculture using extracts of natural materials for transferring organic wastes to environmental-friendly ameliorants in Egypt. International Journal of Environmental Science and Technology 20 (7):7417–32. doi:10.1007/s13762-022-04438-8.
  • Roohinejad, S., M. Kouhia, R. Karimi, P. Rheinländer, R. Greiner, and M. C. Gómez-Guillén. 2017. Nanofood packaging: An overview of market, migration research, and safety regulations. Journal of Food Science 82 (4):872–80.
  • Saberi, A. H., Y. Fang, and D. J. McClements. 2013. Fabrication of food nanomaterials: Current trends and future directions. Food Engineering Reviews 5 (4):199–213.
  • Saxena, S., V. Saharan, D. Kumar, and A. Goyal. 2017. Nanotechnology: An innovative tool for sustainable agriculture. Environmental Chemistry Letters 15 (4):591–605. doi:10.1007/s10311-017-0648-9.
  • Schlich, K., and K. Hund-Rinke. 2015. Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environmental Pollution 196:321–30. doi:10.1016/j.envpol.2014.10.021.
  • Shao, Y., C. Wu, T. Wu, and L. Zhao. 2019. Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis 27 (3):615–30. doi:10.1016/j.jfda.2018.12.011.
  • Sharma, P., D. Bhatt, M. G. H. Zaidi, and P. P. Saradhi. 2005. Effect of nanoparticle of zinc oxide on the germination of crop plants. Journal of Nanoscience and Nanotechnology 5 (10):1–6.
  • Singh, P., Y. J. Kim, H. Singh, R. Mathiyalagan, C. Wang, and D. C. Yang. 2019. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artificial Cells, Nanomedicine, and Biotechnology 47 (1):1573–83. doi:10.3109/21691401.2015.1008514.
  • Singh, R., U. U. Shedbalkar, S. A. Wadhwani, and B. A. Chopade. 2015. Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications. Applied Microbiology and Biotechnology 99 (11):4579–93. doi:10.1007/s00253-015-6622-1.
  • Singh, D., and R. P. Singh. 2021. Nanotechnology in agriculture: Current status, challenges, and future prospects. Journal of Renewable Materials 9 (6):1023–35.
  • Singh, R., D. P. Singh, and V. P. Singh. 2016. Iron oxide nanoparticles: Applications, synthesis, and toxicity in agriculture. Environment International 89-90:714–23.
  • Tripathi, D. K., S. Singh, S. Singh, P. K. Srivastava, V. P. Singh, S. Singh, and S. Sharma. 2018. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry 130:360–72.
  • Vakurov, A., and P. Reip. 2019. Opportunities and risks of nanotechnology applications in agriculture: A review. Agronomy for Sustainable Development 39 (3):23. doi:10.1007/s13593-018-0550-2.
  • Wang, P., E. Lombi, F. J. Zhao, and P. M. Kopittke. 2016. Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science 21 (8):699–712. doi:10.1016/j.tplants.2016.04.005.
  • Xu, Z. P. 2022. Material nanotechnology is sustaining modern agriculture. ACS Agricultural Science & Technology 2 (2):232–39. doi:10.1021/acsagscitech.1c00204.
  • Zhu, H., J. Han, J. Q. Xiao, and Y. Jin. 2016. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring 18 (3):102–08.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.