272
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Neoarchaean DTTGs from the Dunhuang Block, Tarim Craton: insights into petrogenesis and crust–mantle interactions

, , , , , , , & show all
Pages 1910-1928 | Received 22 Mar 2023, Accepted 10 Sep 2023, Published online: 19 Sep 2023

References

  • Asimow, P.D., and Ghiorso, M.S., 1998, Algorithmic modifications extending MELTS to calculate subsolidus phase relations: American Mineralogist, v. 83, no. 9–10, p. 1127–1132. 10.2138/am-1998-9-1022.
  • Barker, F., 1979, Trondhjemite: Definition, environment and hypotheses of origin, in Barker, F., ed., Trondhjemites, dacites, and related rocks: Amsterdam, Elsevier, p. 1–12. 10.1016/B978-0-444-41765-7.50006-X.
  • Barth, M.G., McDonough, W.F., and Rudnick, R.L., 2000, Tracking the budget of Nb and Ta in the continental crust: Chemical Geology, v. 165, no. 3–4, p. 197–213. 10.1016/S0009-2541(99)00173-4.
  • BGMRX (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region), 1993, Regional Geology of Xinjiang Uygur Autonomous region: Beijing, Geological Publishing House (in Chinese with English abstract), 17–45. p
  • Blundy, J.D., and Holland, T.J.B., 1990, Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer: Contrib: Contributions to mineralogy and petrology, v. 104, no. 2, p. 208–224. 10.1007/BF00306444.
  • Cai, Z.H., Xu, Z.Q., Yu, S.Y., He, B.Z., He, B., Ma, X., Chen, X., and Xu, X., 2018, Neoarchean magmatism and implications for crustal growth and evolution of the Kuluketage region, northeastern Tarim Craton: Precambrian Research, v. 304, p. 156–170. 10.1016/j.precamres.2017.11.016.
  • Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., and Nebel, O., 2018, Geological archive of the onset of plate tectonics: Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, v. 376, no. 2132, p. 20170405. 10.1098/rsta.2017.0405.
  • Champion, D.C., and Smithies, R.H., 2003a, Archaean granites, in Blevin, P., Jones, M., and Chappell, B., eds., Magmas to mineralisation: The ishihara symposium: Australia, Geosciencepp, p. 19–24.
  • Champion, D.C., and Smithies, R.H., 2003b, Slab melts and related processes—Archaean versus recent, in Arima, M., Nakajima, T., and Ishihara, S., eds., Hutton symposium V, the origin of granites and related rocks: Geological Survey of Japan, p. 19.
  • Collins, W.J., Huang, H., and Jiang, X., 2016, Water-fluxed crustal melting produces cordilleran batholiths: Geology, v. 44, no. 2, p. 143–146. 10.1130/G37398.1.
  • Collins, W.J., Murphy, J.B., Johnson, T.E., and Huang, H.-Q., 2020, Critical role of water in the formation of continental crust: Nature Geoscience, v. 13, no. 5, p. 331–338. 10.1038/s41561-020-0573-6.
  • Condie, K.C., 2005, TTGs and adakites: Are they both slab melts?: Lithos, v. 80, no. 1–4, p. 33–44. 10.1016/j.lithos.2003.11.001.
  • Dey, S., Halla, J., Kurhila, M., Nandi, J., Heilimo, E., and Pal, S., 2016, Geochronology of Neoarchean granitoids of nw dharwar craton: Implications for crust formation, in Halla, J., Whitehouse, M.J., Ahmed, T., and Bagai, Z., eds., Crust-mantle interactions and granitoid diversification: Insights from Archean Cratons: Geological Society of London Special Publication, p. 449.
  • Dong, C., Ge, Y., Liu, R.F., Wilde, S.J., Xie, S.A., Zhu, H.Q., Wu, W.B., Li, H.B., and Wan, Y.S., 2022, Multiple episodes of early Precambrian magmatism and tectonism in the Tarim Craton: A North China connection: Lithos, v. 430-431, p. 430–431. 10.1016/j.lithos.2022.106883.
  • Ferriss, E.D.A., and Essene, E.J., 2008, Computational study of the effect of pressure on the Ti-in-zircon geothermometer: European Journal of Mineralogy, v. 20, no. 5, p. 745–755. 10.1127/0935-1221/2008/0020-1860.
  • Foley, S., Tiepolo, M., and Vannucci, R., 2002, Growth of early continental crust controlled by melting of amphibolite in subduction zones: Nature, v. 417, no. 6891, p. 837–840. 10.1038/nature00799.
  • Ganne, J., and Feng, X.J., 2017, Primary magmas and mantle temperatures through time: Geochemistry, Geophysics, Geosystems, v. 18, no. 3, p. 872–888. 10.1002/2016GC006787.
  • Gao, L., Liu, S.W., Sun, G.Z., Guo, R.R., Hu, Y.L., Fu, J.H., Wang, M.J., Ma, C.C., and Hu, F.Y., 2018, Petrogenesis of late Neoarchean high–K granitoids in the western Shandong terrane, North China Craton, and their implications for crust–mantle interactions: Precambrian Research, v. 315, p. 138–161. 10.1016/j.precamres.2018.07.006.
  • Ge, R.F., Wilde, S.A., Kemp, A., Jeon, H., Martin, L.A.J., Zhu, W., and Wu, H., 2020, Generation of eoarchean continental crust from altered mafic rocks derived from a chondritic mantle: The ∼3.72 Ga aktash gneisses, Tarim Craton (NW China): Earth and Planetary Science Letters, v. 538, p. 538–116225. 10.1016/j.epsl.2020.116225.
  • Ge, R.F., Wilde, S.A., Zhu, W.B., Zhou, T., and Si, Y., 2022, Formation and evolution of Archean continental crust: A thermodynamic-geochemical perspective of granitoids from the Tarim Craton, NW China: Earth-Science Reviews, v. 234, p. 104219. 10.1016/j.earscirev.2022.104219.
  • Ge, R.F., Zhu, W.B., Wilde, S.A., and Wu, H.L., 2018, Remnants of eoarchean continental crust derived from a subducted proto-arc: Science Advances, v. 4, no. 2. 10.1126/sciadv.aao3159.
  • Ge, R.F., Zhu, W.B., Wu, H.L., He, J.W., and Zheng, B.H., 2013, Zircon U–Pb ages and Lu–Hf isotopes of Paleoproterozoic metasedimentary rocks in the Korla complex, NW China: Implications for metamorphic zircon formation and geological evolution of the Tarim Craton: Precambrian Research, v. 231, p. 1–18. 10.1016/j.precamres.2013.03.003.
  • Ghiorso, M.S., and Sack, R.O., 1995, Chemical Mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures: Contributions to mineralogy and petrology, v. 119, no. 2–3, p. 197–212. 10.1007/BF00307281.
  • Grove, T.L., Till, C.B., and Krawczynski, M.J., 2012, The role of H2O in subduction zone magmatism: Annual Review of Earth and Planetary Sciences, v. 40, no. 1, p. 413–439. 10.1146/annurev-earth-042711-105310.
  • Haschke, M., Siebel, W., Günther, A., and Scheuber, E., 2002, Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°-26°S): Journal of Geophysical Research: Solid Earth, v. 107, no. B1, p. ECV 6–18. 10.1029/2001JB000328.
  • Herzberg, C., Condie, K., and Korenaga, J., 2010, Thermal history of the Earth and its petrological expression: Earth and Planetary Science Letters, v. 292, no. 1–2, p. 79–88. 10.1016/j.epsl.2010.01.022.
  • He, Z.Y., Zhang, Z.M., Zong, K.Q., Xiang, H., and Klemd, R., 2014, Metamorphic P-T-t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction: Lithos, v. 196-197, p. 1–13. 10.1016/j.lithos.2014.02.020.
  • Hoffmann, J.E., Zhang, C., Moyen, J.F., and Nagel, T.J., 2019, The formation of tonalites – trondjhemite – granodiorites in early continental crust, in Van Kranendonk, M.J., Bennett, V., and Hoffmann, E., eds., Earth’s oldest rocks: Elsevier, p. 133–168. 10.1016/B978-0-444-63901-1.00007-1.
  • Hu, Y.L., Liu, S.W., Gao, L., Sun, G.Z., Guo, R.R., Fu, J.H., Wang, M.J., and Hu, F.Y., 2019, Diverse middle Neoarchean granitoids and the delamination of thickened crust in the western Shandong Terrane, North China Craton: Lithos, v. 348-349, p. 105178. 10.1016/j.lithos.2019.105178.
  • Jagoutz, O.E., 2010, Construction of the granitoid crust of an island arc. Part II: A quantitative petrogenetic model: Contributions to mineralogy and petrology, v. 160, no. 3, p. 359–381. 10.1007/s00410-009-0482-6.
  • Jahn, B.M., Auvray, B., Shen, Q.H., Liu, D.Y., Zhang, Z.Q., Dong, Y.J., Ye, X.J., Zhang, Q.Z., Cornichet, J., and Mace, J., 1988, Archean crustal evolution in China: The Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle: Precambrian Research, v. 38, no. 4, p. 381–403. 10.1016/0301-9268(88)90035-6.
  • Jayananda, M., Aadhiseshan, K.R., Kusiak, M.A., Wilde, S.A., Sekhamo, K.U., Guitreau, M., Gireesh, R.V., and Gireesh, R.V., 2020, Multi-stage crustal growth and Neoarchean geodynamics in the eastern Dharwar Craton, southern India: Gondwana Research, v. 78, p. 228–260. 10.1016/j.gr.2019.09.005.
  • Jayananda, M., Chardon, D., Peucat, J.J., and Capdevila, R., 2006, 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints: Precambrian Research, v. 150, no. 1–2, p. 1–26. 10.1016/j.precamres.2006.05.004.
  • Jayananda, M., Chardon, D., Peucat, J.J., Fanning, C.M., and Fanning, C.M., 2015, Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, southern India: Constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes: Precambrian Research, v. 268, p. 295–322. 10.1016/j.precamres.2015.07.015.
  • Jayananda, M., Moyen, J., Martin, H., Peucat, J., Auvray, B., and Mahabaleswar, B., 2000, Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry: Precambrian Research, v. 99, no. 3–4, p. 225–254. 10.1016/S0301-9268(99)00063-7.
  • Jayananda, M., Santosh, M., and Aadhiseshan, K.R., 2018, Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India: Earth-Science Reviews, v. 181, p. 12–42. 10.1016/j.earscirev.2018.03.013.
  • Johnson, T.E., Brown, M., Gardiner, N.J., Kirkland, C.L., and Smithies, R.H., 2017, Earth’s first stable continents did not form by subduction: Nature, v. 543, no. 7644, p. 239–242. 10.1038/nature21383.
  • Johnson, T.E., Kirkland, C.L., Gardiner, N.J., Brown, M., Smithies, R.H., and Santosh, M., 2019, Secular change in TTG compositions: Implications for the evolution of Archaean geodynamics: Earth and Planetary Science Letters, v. 505, p. 65–75. 10.1016/j.epsl.2018.10.022.
  • Kent, A.J.R., Darr, C., Koleszar, A.M., Salisbury, M.J., and Cooper, K.M., 2010, Preferential eruption of andesitic magmas through recharge filtering: Nature Geoscience, v. 3, no. 9, p. 631–636. 10.1038/ngeo924.
  • Labrosse, S., and Jaupart, C., 2007, Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics: Earth and Planetary Science Letters, v. 260, no. 3–4, p. 465–481. 10.1016/j.epsl.2007.05.046.
  • LaFlèche, M.R., Camire, G., and Jenner, G.A., 1998, Geochemistry of post-Acadian, carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada: Chemical Geology, v. 148, no. 3–4, p. 115–136. 10.1016/S0009-2541(98)00002-3.
  • Laurent, O., Bjornsen, J., Wotzlaw, J., Bretscher, S., Pimenta Silva, M., Moyen, J., Ulmer, P., and Bachmann, O., 2020, Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions: Nature Geoscience, v. 13, no. 2, p. 163–169. 10.1038/s41561-019-0520-6.
  • Liu, Y.S., Yu, H.F., Xin, H.T., Lu, S.N., Xiu, Q.Y., and Li, Q., 2009, Tectonic units division and Precambrian significant geological events in Altyn Tagh Mountain, China: Geological Bulletin of China, v. 28, p. 1430–1438. (In Chinese with English Abstract)
  • Long, X.P., Yuan, C., Sun, M., Kröner, A., and Zhao, G.C., 2014, New geochemical and combined zircon U-Pb and Lu-Hf isotopic data of orthogneisses in the northern altyn tagh, northern margin of the Tibetan plateau: Implication for Archean evolution of the Dunhuang block and crust formation in NW China: Lithos, v. 200-201, p. 418–431. 10.1016/j.lithos.2014.05.008.
  • Long, X.P., Yuan, C., Sun, M., Zhao, G.C., Xiao, W.J., Wang, Y.J., Yang, Y.H., and Hu, A.Q., 2010, Archean crustal evolution of the northern Tarim craton, NW China: Zircon U–Pb and Hf isotopic constraints: Precambrian Research, v. 180, no. 3–4, p. 272–284. 10.1016/j.precamres.2010.05.001.
  • Lu, S.N., Li, H.K., Zhang, C.L., and Niu, G.H., 2008, Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments: Precambrian Research, v. 160, no. 1–2, p. 94–107. 10.1016/j.precamres.2007.04.025.
  • Lv, P., Yu, S.Y., Xie, J., Zhang, W.M., Jiang, X.Z., Gao, X.Y., Ji, W.T., Li, S.Z., and Liu, Y.J., 2020, Paleoproterozoic multiple magmatic-metamorphic events in the Dunhuang block, eastern Tarim Craton: Implications for assembly of the Columbia supercontinent: Precambrian Research, v. 351, p. 106–446. 10.1016/j.precamres.2020.105949.
  • Maniar, P.D., and Piccoli, P.M., 1989, Tectonic discrimination of granitoids: Geological Society of America Bulletin, v. 101, no. 5, p. 635–643. 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.
  • Martin, H., 1986, Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas: Geology, v. 14, no. 9, p. 753–756. 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2.
  • Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., and Champion, D., 2005, An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution: Lithos, v. 79, no. 1–2, p. 1–24. 10.1016/j.lithos.2004.04.048.
  • Meng, F.C., Zhang, J.X., Xiang, Z.Q., Yu, S.Y., and Li, J.P., 2011, Evolution and formation of the Dunhuang group in NE Tarim basin, NW China: Evidence from detrital zircon geochronology and Hf isotope: Acta Petrologica Sinica, v. 27, p. 59–76. (In Chinese with English Abstract).
  • Middlemost, E.A.K., 1994, Naming materials in the magma/igneous rock system: Earth-Science Reviews, v. 37, no. 3–4, p. 215–224. 10.1016/0012-8252(94)90029-9.
  • Moyen, J.F., 2011, The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth: Lithos, v. 123, no. 1–4, p. 21–36. 10.1016/j.lithos.2010.09.015.
  • Moyen, J.F., and Laurent, O., 2018, Archaean tectonic systems: A view from igneous rocks: Lithos, v. 302-303, p. 99–125. 10.1016/j.lithos.2017.11.038.
  • Moyen, J.F., and Martin, H., 2012, Forty years of TTG research: Lithos, v. 148, p. 312–336. 10.1016/j.lithos.2012.06.010.
  • Palin, R.M., White, R.W., and Green, E.C.R., 2016, Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling: Precambrian Research, v. 287, p. 73–90. 10.1016/j.precamres.2016.11.001.
  • Patino-Douce, A.E., 1999, What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?: Geological Society, London, Special Publications, v. 168, no. 1, p. 55–75. 10.1144/GSL.SP.1999.168.01.05.
  • Polat, A., 2012, Growth of Archean continental crust in oceanic island arcs: Geology, v. 40, no. 4, p. 383–384. 10.1130/focus042012.1.
  • Polat, A., and Hofmann, A.W., 2003, Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Precambrian Research, v. 126, no. 3–4, p. 197–218. 10.1016/S0301-9268(03)00095-0.
  • Polat, A., and Kerrich, R., 2001, Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes: Contributions to Mineralogy and Petrology, v. 141, no. 1, p. 36–52. 10.1007/s004100000223.
  • Qian, Q., and Hermann, J., 2013, Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation: Contributions to Mineralogy and Petrology, v. 165, no. 6, p. 1195–1224. 10.1007/s00410-013-0854-9.
  • Rapp, R.P., Shimizu, N., Norman, M.D., and Applegate, G.S., 1999, Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa: Chemical Geology, v. 160, no. 4, p. 335–356. 10.1016/S0009-2541(99)00106-0.
  • Rickwood, P.C., 1989, Boundary lines within petrologic diagrams which use oxides of major and minor elements: Lithos, v. 22, no. 4, p. 247–263. 10.1016/0024-4937(89)90028-5.
  • Schiano, P., Monzier, M., Eissen, J.P., Martin, H., and Koga, K.T., 2010, Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes: Contributions to Mineralogy and Petrology, v. 160, no. 2, p. 297–312. 10.1007/s00410-009-0478-2.
  • Sizova, E., Gerya, T., and Brown, M., 2014, Contrasting styles of Phanerozoic and Precambrian continental collision: Gondwana Research, v. 25, no. 2, p. 522–545. 10.1016/j.gr.2012.12.011.
  • Sizova, E., Gerya, T., Brown, M., and Perchuk, L.L., 2010, Subduction styles in the Precambrian: Insight from numerical experiments: Lithos, v. 116, no. 3–4, p. 209–229. 10.1016/j.lithos.2009.05.028.
  • Smithies, R.H., 2000, The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite: Earth and Planetary Science Letters, v. 182, no. 1, p. 115–125. 10.1016/S0012-821X(00)00236-3.
  • Smithies, R.H., Lu, Y., Johnson, T.E., Kirkland, C.L., Cassidy, K.F., Champion, D.C., Mole, D.R., Zibra, I., Gessner, K., Sapkota, J., De Paoli, M.C., and Poujol, M., 2019, No evidence for high-pressure melting of Earth’s crust in the Archean: Nature Communications, v. 10, no. 1, p. 1–12. 10.1038/s41467-019-13547-x.
  • Smithies, R.H., Lu, Y., Kirkland, C.L., Johnson, T.E., Mole, D.R., Champion, D.C., Martin, L., Jeon, H., Wingate, M.T.D., and Johnson, S.P., 2021, Oxygen isotopes trace the origins of Earth’s earliest continental crust: Nature, v. 592, no. 7852, p. 70–75. 10.1038/s41586-021-03337-1.
  • Stern, R.J., 2002, Subduction zones: Reviews of Geophysics, v. 40, no. 4, p. 3–38. 10.1029/2001RG000108.
  • Stern, C.R., and Kilian, R., 1996, Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone: Contributions to Mineralogy and Petrology, v. 123, no. 3, p. 263–281. 10.1007/s004100050155.
  • Sun, G.Z., Liu, S.W., Gao, L., Hu, Y.L., Guo, R.R., Fu, J.H., Wang, M.J., Ma, C.C., and Hu, F.Y., 2019, Neoarchean sanukitoids and associated rocks from the Tengzhou-Pingyi intrusive complex, North China Craton: Insights into petrogenesis and crust-mantle interactions: Gondwana Research, v. 68, p. 50–68. 10.1016/j.gr.2018.11.005.
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, no. 1, p. 313–345. 10.1144/GSL.SP.1989.042.01.19.
  • Tang, M., Chen, K., and Rudnick, R.L., 2016, Archean upper crust transition from mafic to felsic marks the onset of plate tectonics: Science, v. 351, no. 6271, p. 372–375. 10.1126/science.aad5513.
  • Van Hunen, J., and Van den Berg, A., 2008, Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere: Lithos, v. 103, no. 1–2, p. 217–235. 10.1016/j.lithos.2007.09.016.
  • Wang, Z.M., Han, C.M., Xiao, W., and Sakyi, P.A., 2020, Paleoproterozoic multiphase magmatism and metamorphism recorded in metamorphic basement rocks of the northern altyn tagh, southeastern tarim craton: Precambrian Research, v. 346, p. 105827. 10.1016/j.precamres.2020.105827.
  • Wang, Z.M., Han, C.M., Xiao, W.J., Su, B.X., and Ding, J.X., 2017, Paleoproterozoic subduction-related magmatism and crustal evolution of the Dunhuang block, NW China: Journal of Asian Earth Sciences, v. 134, p. 13–28. 10.1016/j.jseaes.2016.11.008.
  • Wang, H.Y.C., Zhang, Q.W.L., Lu, J.S., Chen, H.X., Liu, J.H., Zhang, H.C.G., Pham, V.T., Peng, T., and Wu, C.M., 2018, Metamorphic evolution and geochronology of the tectonic mélange of the Dongbatu and mogutai blocks, middle Dunhuang orogenic belt, northwestern China: Geosphere, v. 14, no. 2, p. 883–906. 10.1130/GES01514.1.
  • Wan, Y.S., Liu, D.Y., Dong, C.Y., Liu, S.J., Wang, S.J., and Yang, E.X., 2011, U–Th–Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircon dating of meta-diorite near Qixia, eastern Shandong: Geoscience Frontiers, v. 2, no. 2, p. 137–146. 10.1016/j.gsf.2011.02.004.
  • Whitney, D.L., and Evans, B.W., 2010, Abbreviation for names of rock-forming minerals: American Mineralogist, v. 95, no. 1, p. 185–187. 10.2138/am.2010.3371.
  • Workman, R.K., and Hart, S.R., 2005, Major and trace element composition of the depleted MORB mantle (DMM): Earth and Planetary Science Letters, v. 231, no. 1–2, p. 53–72. 10.1016/j.epsl.2004.12.005.
  • Wu, H.L., Ge, R.F., and Zhu, W.B., 2019, Late Paleoproterozoic granulite-facies metamorphism in the North Altyn Tagh area, southeastern Tarim craton: Pressure-temperature paths, zircon U-Pb ages, and tectonic implications: GSA Bulletin, v. 131, no. 9–10, p. 1591–1606. 10.1130/B35085.1.
  • Wyman, D.A., Ayer, J.A., and Devaney, J.R., 2000, Niobium-enriched basalts from the wabigoon subprovince, Canada: Evidence for adakitic metasomatism above an Archean subduction zone: Earth and Planetary Science Letters, v. 179, no. 1, p. 21–30. 10.1016/S0012-821X(00)00106-0.
  • Xu, Z.Q., He, B.Z., Zhang, C.L., Zhang, J.X., Wang, Z.M., and Cai, Z.H., 2013, Tectonic framework and crustal evolution of the Precambrian basement of the Tarim block in NW China: New geochronological evidence from deep drilling samples: Precambrian Research, v. 235, p. 150–162. 10.1016/j.precamres.2013.06.001.
  • Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q., and Rapp, R.P., 2002, Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China: Partial melting of delaminated lower continental crust?: Geology, v. 30, no. 12, p. 1111–1114. 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2.
  • Ye, X.T., and Zhang, C.L., 2020, Petrogenesis and tectonic implications of the Neoarchean TTG gneiss in the North Altyn Tagh area, southeastern Tarim Craton: Acta Petrological Sinica, v. 36, no. 11, p. 3397–3413. 10.18654/1000-0569/2020.11.09.
  • Yu, S.Y., Zhang, J.X., Zhao, X.L., Gong, J.H., and Li, Y.S., 2014, Geochronology, geochemistry and petrogenesis of the late Palaeoproterozoic A-type granites from the Dunhuang block, SE Tarim Craton, China: Implications for the break-up of the Columbia supercontinent: Geological Magazine, v. 151, no. 4, p. 629–648. 10.1017/S0016756813000538.
  • Zhang, Q., Liu, J.H., Wang, H., Shi, M.Y., Chen, Y.C., Li, Z., Zhang, H., Pham, V.T., and Wu, C.M., 2019, Amphibolite facies metamorphism and geochronology of the Paleoproterozoic Aketashitage orogenic belt, northwestern China: Precambrian Research, v. 328, p. 146–160. 10.1016/j.precamres.2019.04.019.
  • Zhang, J.X., Yu, S.Y., Gong, J.H., Li, H.K., and Hou, K.J., 2013, The latest Neoarchean Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: Evidence from zircon U-Pb dating and Hf isotopic analyses: Precambrian Research, v. 226, p. 21–42. 10.1016/j.precamres.2012.11.014.
  • Zhang, Q., and Zhai, M.G., 2012, The structures for the loop-Witt algebra: Acta Mathematica Sinica, English Series, v. 28, no. 11, p. 2329–2344. 10.1007/s10114-012-0161-9.
  • Zhang, C.L., Zou, H.B., Santosh, M., Ye, X.T., and Li, H.K., 2014, Is the Precambrian basement of the Tarim Craton in NW China composed of discrete terranes?: Precambrian Research, v. 254, p. 226–244. 10.1016/j.precamres.2014.08.006.
  • Zhao, Y., 2017. Composition and evolution of the Dunhuang orogenic belt [ Doctoral dissertation]: Northwest University P548, (in Chinese with English abstract).
  • Zhao, G.C., and Cawood, P.A., 2012, Precambrian geology of China: Precambrian Research, v. 222-223, p. 13–54. 10.1016/j.precamres.2012.09.017.
  • Zhao, Y., Diwu, C.R., Ao, W.H., Wang, H.L., Zhu, T., and Sun, Y., 2015, Ca. 3.06 Ga granodioritic gneiss in Dunhuang block: Chinese Science Bulletin, v. 60, no. 1, p. 75–87. 10.1360/N972014-00382.
  • Zhao, Y., Diwu, C.R., Sun, Y., Zhu, T., Wang, H., 2013, Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in Shuixiakou area,Gansu Province: Acta Petrologica Sinica, v. 29, p. 1698–1712. (in Chinese with English abstract).
  • Zhao, Y., Sun, Y., Yan, J.H., and Diwu, C.R., 2015, The Archean-Paleoproterozoic crustal evolution in the Dunhuang region, NW China: Constraints from zircon U-Pb geochronology and in situ Hf isotopes: Precambrian Research, v. 271, p. 83–97. 10.1016/j.precamres.2015.10.002.
  • Zheng, Y.F., and Chen, Y.X., 2016, Continental versus oceanic subduction zones: National Science Review, v. 3, no. 4, p. 495–519. 10.1093/nsr/nww049.
  • Zheng, Y.F., Zhao, Z.F., and Chen, Y.X., 2013, Continental subduction Channel processes: Plate interface interaction during continental collision: Chinese Science Bulletin, v. 58, no. 35, p. 4371–4377. (in Chinese). 10.1007/s11434-013-6066-x.
  • Zong, K.Q., Liu, Y.S., Zhang, Z.M., He, Z.Y., Hu, Z.C., Guo, J.L., and Chen, K., 2013, The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China: Precambrian Research, v. 235, p. 251–263. 10.1016/j.precamres.2013.07.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.