192
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geodynamic regime of the southeastern North China Craton before the Tectono-Magmatic Lull: evidence from ca. 2510 Ma and 2430 Ma igneous rocks in the Xuhuai micro-block

, , , , , , , , , & show all
Pages 2079-2102 | Received 13 Jul 2023, Accepted 14 Oct 2023, Published online: 23 Oct 2023

References

  • Aldanmaz, E., Pearce, J.A., Thirlwall, M., and Mitchell, J., 2000, Petrogenetic evolution of late Cenozoic, post-collision volcanism in Western Anatolia, Turkey: Journal of Volcanology and Geothermal Research, v. 102, no. 1–2, p. 67–95. 10.1016/S0377-0273(00)00182-7
  • Aydin, F., Schmitt, A.K., Siebel, W., Sönmez, M., Ersoy, Y., Lermi, A., Dirik, K., and Duncan, R., 2014, Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): Age, petrogenesis and geodynamic implications: Contributions to Mineralogy and Petrology, v. 168, no. 5, p. 1–24. 10.1007/s00410-014-1078-3
  • Barker, F., and Arth, J.G., 1976, Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites: Geology, v. 4, no. 10, p. 596–600. 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
  • Catling, D.C., and Zahnle, K.J., 2020, The Archean atmosphere: Science Advances, v. 6, no. 9, p. eaax1420. 10.1126/sciadv.aax1420
  • Chu, Z.Y., Wu, F.Y., Walker, R.J., Rudnick, R.L., Pitcher, L., Puchtel, I.S., Yang, Y.H., and Wilde, S.A., 2009, Temporal evolution of the Lithospheric Mantle beneath the eastern North China craton: Journal of Petrology, v. 50, no. 10, p. 1857–1898. 10.1093/petrology/egp055
  • Condie, K.C., 2005, Ttgs and adakites: Are they both slab melts?: Lithos, v. 80, no. 1–4, p. 33–44. 10.1016/j.lithos.2003.11.001
  • Condie, K.C., O’Neill, C., and Aster, R.C., 2009, Evidence and implications for a widespread magmatic shutdown for 250 my on Earth: Earth and Planetary Science Letters, v. 282, no. 1–4, p. 294–298. 10.1016/j.epsl.2009.03.033
  • Condie, K.C., Pisarevsky, S.A., Puetz, S.J., Spencer, C.J., Teixeira, W., and Meira Faleiros, F., 2022, A reappraisal of the global tectono-magmatic lull at ∼ 2.3 Ga: Precambrian Research, v. 376, p. 106690. 10.1016/j.precamres.2022.106690
  • Defant, M.J., and Drummond, M.S., 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere: Nature, v. 347, no. 6294, p. 662–665. 10.1038/347662a0
  • Devine, J.D., 1995, Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited: Journal of Volcanology and Geothermal Research, v. 69, no. 1–2, p. 1–33. 10.1016/0377-0273(95)00024-0
  • Diwu, C., Sun, Y., Zhao, Y., and Lai, S., 2014, Early Paleoproterozoic (2.45–2.20Ga) magmatic activity during the period of global magmatic shutdown: Implications for the crustal evolution of the southern North China Craton: Precambrian Research, v. 255, p. 627–640. 10.1016/j.precamres.2014.08.001
  • Duggen, S., Hoernle, K., van den Bogaard, P., and Garbe-Schönberg, D., 2005, Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere: Journal of Petrology, v. 46, no. 6, p. 1155–1201. 10.1093/petrology/egi013
  • Elliott, T., Plank, T., Zindler, A., White, W., and Bourdon, B., 1997, Element transport from slab to volcanic front at the Mariana arc: Journal of Geophysical Research: Solid Earth, v. 102, no. B7, p. 14991–15019. 10.1029/97JB00788
  • Eriksson, P.G., Catuneanu, O., Nelson, D.R., Rigby, M.J., Bandopadhyay, P., and Altermann, W., 2012, Events in the Precambrian history of the Earth: Challenges in discriminating their global significance: Marine and Petroleum Geology, v. 33, no. 1, p. 8–25. 10.1016/j.marpetgeo.2010.01.009
  • Evans, D.A.D., and Halls, H.C., 2010, Restoring Proterozoic deformation within the Superior craton: Precambrian Research, v. 183, no. 3, p. 474–489. 10.1016/j.precamres.2010.02.007
  • Foley, S.F., Buhre, S., and Jacob, D.E., 2003, Evolution of the Archaean crust by delamination and shallow subduction: Nature, v. 421, no. 6920, p. 249–252. 10.1038/nature01319
  • French, J.E., and Heaman, L.M., 2010, Precise U–Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: Implications for the existence of the Neoarchean supercraton Sclavia: Precambrian Research, v. 183, no. 3, p. 416–441. 10.1016/j.precamres.2010.05.003
  • Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., 2001, A geochemical classification for granitic rocks: Journal of Petrology, v. 42, no. 11, p. 2033–2048. 10.1093/petrology/42.11.2033
  • Gao, L., Liu, S., Hu, Y., Sun, G., Guo, R., and Bao, H., 2020, Late Neoarchean geodynamic evolution: Evidence from the metavolcanic rocks of the Western Shandong Terrane, North China Craton: Gondwana Research, v. 80, p. 303–320. 10.1016/j.gr.2019.10.017
  • Gao, L., Liu, S., Sun, G., Guo, R., Hu, Y., Fu, J., Wang, M., Ma, C., and Hu, F., 2018, Petrogenesis of late Neoarchean high-K granitoids in the Western Shandong terrane, North China Craton, and their implications for crust-mantle interactions: Precambrian Research, v. 315, p. 138–161. 10.1016/j.precamres.2018.07.006
  • Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C., and Wang, Q.H., 2004, Recycling lower continental crust in the North China craton: Nature, v. 432, no. 7019, p. 892–897. 10.1038/nature03162
  • Geringer, G.J., 1979, The origin and tectonic setting of amphibolites in part of the Namaqua: Transactions of the Royal Society of South Africa, v. 82, p. 287–303.
  • Grant, M.L., Wilde, S.A., Wu, F., and Yang, J., 2009, The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China craton at the Archean/Proterozoic boundary: Chemical Geology, v. 261, no. 1–2, p. 155–171. 10.1016/j.chemgeo.2008.11.002
  • Green, T.H., 1995, Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system: Chemical Geology, v. 120, no. 3, p. 347–359. 10.1016/0009-2541(94)00145-X
  • Gumsley, A.P., Chamberlain, K.R., Bleeker, W., Söderlund, U., de Kock, M.O., Larsson, E.R., and Bekker, A., 2017, Timing and tempo of the great oxidation event: Proceedings of the National Academy of Sciences, v. 114, no. 8, p. 1811–1816. 10.1073/pnas.1608824114
  • Hartlaub, R.P., Heaman, L.M., Chacko, T., and Ashton, K.E., 2007, Circa 2.3‐Ga magmatism of the Arrowsmith orogeny, Uranium City region, Western Churchill Craton, Canada: The Journal of Geology, v. 115, no. 2, p. 181–195. 10.1086/510641
  • Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., and Storey, C.D., 2010, The generation and evolution of the continental crust: Journal of the Geological Society, v. 167, no. 2, p. 229–248. 10.1144/0016-76492009-072
  • He, X., Wang, W., Santosh, M., Yao, J., Gao, K., Zhang, Y., Lu, D., and Guo, L., 2021, Late Neoarchean crustal growth under paired continental arc-back arc system in the North China Craton: Geoscience Frontiers, v. 12, no. 3, p. 101120. 10.1016/j.gsf.2020.12.003
  • Huang, X.L., Wilde, S.A., and Zhong, J.W., 2013, Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary: Precambrian Research, v. 233, p. 337–357. 10.1016/j.precamres.2013.05.016
  • Hu, Y.L., Liu, S.W., Gao, L., Sun, G.Z., Guo, R.R., Fu, J., Wang, M.J., and Hu, F.Y., 2019, Diverse middle Neoarchean granitoids and the delamination of thickened crust in the Western Shandong Terrane, North China Craton: Lithos, v. 348, p. 105178. 10.1016/j.lithos.2019.105178
  • Hu, T., Liu, L., Zhou, W., Santosh, M., Shao, Y., Liu, Z., Kong, H., and Zhang, J., 2023, Insights from apatite and zircon geochemistry into peraluminous I-type granitoid: A case study of granodiorite porphyry and lamprophyre in Baoshan, China: Geochemistry, p. 125999. 10.1016/j.chemer.2023.125999
  • Humbert, F., Sonnette, L., de Kock, M.O., Robion, P., Horng, C.S., Cousture, A., and Wabo, H., 2017, Palaeomagnetism of the early Palaeoproterozoic, volcanic Hekpoort Formation (Transvaal Supergroup) of the Kaapvaal craton, South Africa: Geophysical Journal International, v. 209, no. 2, p. 842–865. 10.1093/gji/ggx055
  • Jahn, B.M., Auvray, B., Cornichet, J., Bai, Y.L., Shen, Q.H., and Liu, D.Y., 1987, 3.5 Ga old amphibolites from eastern Hebei province, China: Field occurrence, petrography, Sm-nd isochron age and REE geochemistry: Precambrian Research, v. 34, no. 3–4, p. 311–346. 10.1016/0301-9268(87)90006-4
  • Klemme, S., Günther, D., Hametner, K., Prowatke, S., and Zack, T., 2006, The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon: Chemical Geology, v. 234, no. 3–4, p. 251–263. 10.1016/j.chemgeo.2006.05.005
  • Kretz, R, 1983, Symbols for rock-forming minerals. American Mineralogist, v. 68, no. 1–2, p. 277–279.
  • Kröner, A., Cui, W.Y., Wang, S.Q., Wang, C.Q., and Nemchin, A.A., 1998, Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning province, NE China: Journal of Asian Earth Sciences, v. 16, no. 5–6, p. 519–532. 10.1016/S0743-9547(98)00033-6
  • Kumar, A., Parashuramulu, V., and Nagaraju, E., 2015, A 2082Ma radiating dyke swarm in the Eastern Dharwar Craton, southern India and its implications to Cuddapah basin formation: Precambrian Research, v. 266, p. 490–505. 10.1016/j.precamres.2015.05.039
  • La Flèche, M., Camire, G., and Jenner, G., 1998, Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes basin, Magdalen islands, Quebec, Canada: Chemical Geology, v. 148, no. 3–4, p. 115–136. 10.1016/S0009-2541(98)00002-3
  • Lee, C.-T.A., Yeung, L.Y., McKenzie, N.R., Yokoyama, Y., Ozaki, K., and Lenardic, A., 2016, Two-step rise of atmospheric oxygen linked to the growth of continents: Nature Geoscience, v. 9, no. 6, p. 417–424. 10.1038/ngeo2707
  • Liu, L., Kang, S., Liu, H., Hu, T., Zhou, W., and Zhang, Y., 2023, Formation and evolution of Archean TTG in southeastern North China Craton: Geological Review, v. 69, no. 1, p. 49–75.
  • Liu, J.H., Liu, F.L., Ding, Z.J., Liu, C.H., Yang, H., Liu, P.H., Wang, F., and Meng, E., 2013, The growth, reworking and metamorphism of early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses: Precambrian Research, v. 224, p. 287–303. 10.1016/j.precamres.2012.10.003
  • Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., and Shen, Q.H., 1992, Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean Craton: Geology, v. 20, no. 4, p. 339. 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
  • Liu, Y., Xu, Y., Ali, P., Yang, K.G., Zhou, Q., Wu, P., and Yang, Z.N., 2022, 840–820 Ma Dahongshan bimodal volcanic rocks: New constraints on the Neoproterozoic arc–back-arc basin system along the northern margin of the Yangtze block: International Geology Review, v. 65, no. 9, p. 1425–1456. 10.1080/00206814.2022.2089924
  • Ludwig, K.R, 2003, User’s manual for Isoplot/Ex, version 3.0, a geochronological toolkit for Microsoft excel. Berkeley Geochronology Center, CA, special publication no. 4 Stiger
  • Lu, G.M., Wang, W., Tian, Y., Spencer, C.J., Huang, S.F., Xue, E.K., and Huang, B., 2021, Siderian mafic-intermediate magmatism in the SW Yangtze block, South China: Implications for global ‘tectono-magmatic lull’ during the early Paleoproterozoic: Lithos, v. 398-399, p. 106306. 10.1016/j.lithos.2021.106306
  • Lyons, T.W., Diamond, C.W., Planavsky, N.J., Reinhard, C.T., and Li, C., 2021, Oxygenation, life, and the Planetary System during Earth’s middle history: An overview: Astrobiology, v. 21, no. 8, p. 906–923. 10.1089/ast.2020.2418
  • Lyons, T.W., Reinhard, C.T., and Planavsky, N.J., 2014, The rise of oxygen in Earth’s early ocean and atmosphere: Nature, v. 506, no. 7488, p. 307–315. 10.1038/nature13068
  • MacDonald, G.A., and Katsura, T., 1964, Chemical composition of hawaiian lavas: Journal of Petrology, v. 5, no. 1, p. 82–133. 10.1093/petrology/5.1.82
  • Maniar, P.D., and Piccoli, P.M., 1989, Tectonic discrimination of granitoid: Geological Society of America Bulletin, v. 101, no. 5, p. 635–643. 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  • Manikyamba, C., Ganguly, S., and Pahari, A, 2021, Geochemical Features of Bellara Trap Volcanic Rocks of Chitradurga Greenstone Belt, Western Dharwar Craton, India: Insights into MORB-BABB Association from a Neoarchean Back-Arc Basin. Journal of Earth Science, 32, 1528–1544.10.1007/s12583-021-1472-5
  • Martin, H., and Moyen, J.-F.O., 2002, Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth: Geology, v. 30, no. 4, p. 319–322. 10.1130/0091-7613(2002)030<0319:SCITTG>2.0.CO;2
  • Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., and Champion, D., 2005, An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution: Lithos, v. 79, no. 1–2, p. 1–24. 10.1016/j.lithos.2004.04.048
  • McKay, G., Le, L., Wagstaff, J., and Crozaz, G., 1994, Experimental partitioning of rare earth elements and strontium: Constraints on petrogenesis and redox conditions during crystallization of Antarctic angrite Lewis Cliff 86010: Geochimica et Cosmochimica Acta, v. 58, no. 13, p. 2911–2919. 10.1016/0016-7037(94)90124-4
  • Meng, E., Liu, F.L., Liu, P.H., Liu, C.H., Yang, H., Wang, F., Shi, J.R., and Cai, J., 2014, Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, northeast China: Evidence from zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry: Precambrian Research, v. 247, p. 92–109. 10.1016/j.precamres.2014.03.017
  • Moyen, J.F., and Martin, H., 2012, Forty years of TTG research: Lithos, v. 148, p. 312–336. 10.1016/j.lithos.2012.06.010
  • Nagaraju, E., Parashuramulu, V., Anil, K., and Srinivas Sarma, D., 2018, Paleomagnetism and geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India: Physics of the Earth and Planetary Interiors, v. 274, p. 222–231. 10.1016/j.pepi.2017.11.006
  • Niu, Y., and O’Hara, M.J., 2009, MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle: Lithos, v. 112, no. 1–2, p. 1–17. 10.1016/j.lithos.2008.12.009
  • Palin, R.M., and Santosh, M., 2020, Plate tectonics: What, where, why, and when?: Gondwana Research. 10.1016/j.gr.2020.1011.1001
  • Pandey, A., Rao, N.C., Pandit, D., Pankaj, P., Pandey, R., Sahoo, S., and Kumar, A., 2017, Subduction–tectonics in the evolution of the eastern Dharwar craton, southern India: Insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin: Precambrian Research, v. 298, p. 235–251. 10.1016/j.precamres.2017.06.004
  • Patiño, D.A.E., 1999, What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?: Geological Society, London, Special Publications, v. 168, no. 1, p. 55–75. 10.1144/GSL.SP.1999.168.01.05
  • Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, no. 1–4, p. 14–48. 10.1016/j.lithos.2007.06.016
  • Peng, P., Wang, C., Wang, X.P., and Yang, S.Y., 2015, Qingyuan high-grade granite-greenstone terrain in the eastern North China Craton: Root of a Neoarchaean arc: Tectonophysics, v. 662, p. 7–21. 10.1016/j.tecto.2015.04.013
  • Polat, A., Kusky, T., Li, J.H., Fryer, B., Kerrich, R., and Patrick, K., 2005, Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: Implications for geodynamic setting and continental growth: Geological Society of America Bulletin, v. 117, no. 11–12, p. 1387–1399. 10.1130/B25724.1
  • Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Gonzales, S.M.H., Kirsch, M., Petrescu, L., and DeCelles, P.G., 2015, Quantifying crustal thickness over time in magmatic arcs: Scientific Reports, v. 5, no. 1, p. 1–7. 10.1038/srep17786
  • Rollinson, H.R., 1993, Using geochemical data: Evaluation, presentation, interpretation: 1st ed., Routledge. 10.4324/9781315845548
  • Saccani, E., 2015, A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and ce-Dy-Yb systematics: Geoscience Frontiers, v. 6, no. 4, p. 481–501. 10.1016/j.gsf.2014.03.006
  • Santosh, M., Gao, P., Yu, B., Yang, C.X., and Kwon, S., 2020, Neoarchean suprasubduction zone ophiolite discovered from the Miyun complex: Implications for Archean–Paleoproterozoic Wilson cycle in the North China craton: Precambrian Research, v. 342, p. 105710. 10.1016/j.precamres.2020.105710
  • Santosh, M., Teng, X.M., He, X.F., Tang, L., and Yang, Q.Y., 2016, Discovery of Neoarchean suprasubduction zone ophiolite suite from Yishui Complex in the North China craton: Gondwana Research, v. 38, p. 1–27. 10.1016/j.gr.2015.10.017
  • Shaw, D.M., 1972, The origin of the Apsley gneiss, Ontario: Canadian Journal of Earth Science, v. 9, no. 1, p. 18–35. 10.1139/e72-002
  • Shellnutt, J.G., and Zhou, M.F., 2007, Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume: Chemical Geology, v. 243, no. 3–4, p. 286–316. 10.1016/j.chemgeo.2007.05.022
  • Smithies, R.H., and Champion, D.C., 1999, Late archaean felsic alkaline igneous rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: A result of lower crustal delamination?: Journal of the Geological Society, v. 156, no. 3, p. 561–576. 10.1144/gsjgs.156.3.0561
  • Smith, E.I., Sanchez, A., Walker, J.D., and Wang, K., 1999, Geochemistry of mafic magmas in the hurricane volcanic field, Utah: Implications for small-and large-scale chemical variability of the lithospheric mantle: The Journal of Geology, v. 107, no. 4, p. 433–448. 10.1086/314355
  • Song, B., Nutman, A.P., Liu, D.Y., and Wu, J.S., 1996, 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning province, northeastern China %J Precambrian Research: Precambrian Research, v. 78, no. 79, p. 79–94. 10.1016/0301-9268(95)00070-4
  • Spencer, C.J., Murphy, J.B., Kirkland, C.L., Liu, Y., and Mitchell, R.N., 2018, A palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle: Nature Geoscience, v. 11, no. 2, p. 97–101. 10.1038/s41561-017-0051-y
  • Sun, G., Liu, S., Gao, L., Hu, Y., Guo, R., Fu, J., Wang, M., Ma, C., and Hu, F., 2019, Neoarchean sanukitoids and associated rocks from the Tengzhou-Pingyi intrusive complex, North China craton: Insights into petrogenesis and crust-mantle interactions: Gondwana Research, v. 68, p. 50–68. 10.1016/j.gr.2018.11.005
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, no. 1, p. 313–345. 10.1144/GSL.SP.1989.042.01.19
  • Tamura, Y., 1994, Genesis of island arc magmas by mantle-derived bimodal magmatism: Evidence from the Shirahama Group, Japan: Journal of Petrology, v. 35, no. 3, p. 619–645. 10.1093/petrology/35.3.619
  • Tang, L., and Santosh, M., 2018, Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China craton: An overview from the central segment of the Trans-North China Orogen: Earth Science Review, v. 182, p. 1–27. 10.1016/j.earscirev.2018.04.010
  • Tarney, J., 1977, Petrology, mineralogy and geochemistry of the falkl and plateau basement rocks, site 330, deep sea and drilling project: Initial Reports of the Deep Sea Drilling Project, v. 36, p. 893–921.
  • Thirlwall, M., Smith, T., Graham, A., Theodorou, N., Hollings, P., Davidson, J., and Arculus, R., 1994, High field strength element anomalies in arc lavas: Source or process?: Journal of Petrology, v. 35, no. 3, p. 819–838. 10.1093/petrology/35.3.819
  • Trim, S.J., Heron, P.J., Stein, C., and Lowman, J.P., 2014, The feedback between surface mobility and mantle compositional heterogeneity: Implications for the Earth and other terrestrial planets: Earth and Planetary Science Letters, v. 405, p. 1–14. 10.1016/j.epsl.2014.08.019
  • Wang, W., Cawood, P.A., Liu, S., Guo, R., Bai, X., and Wang, K., 2017, Cyclic formation and stabilization of Archean lithosphere by accretionary orogenesis: Constraints from TTG and potassic granitoids: North China Craton: Tectonics, v. 36, no. 9, p. 1724–1742. 10.1002/2017TC004600
  • Wang, A.D., and Liu, Y.C., 2012, Neoarchean (2.5–2.8 Ga) crustal growth of the North China craton revealed by zircon Hf isotope: A synthesis: Geoscience Frontiers, v. 3, no. 2, p. 147–173. 10.1016/j.gsf.2011.10.006
  • Wang, Q., Xu, J.-F., Jian, P., Bao, Z.-W., Zhao, Z.-H., Li, C.-F., Xiong, X.-L., and Ma, J.-L., 2006, Petrogenesis of adakitic porphyries in an extensional tectonic setting, dexing, South China: Implications for the genesis of porphyry copper mineralization: Journal of Petrology, v. 47, no. 1, p. 119–144. 10.1093/petrology/egi070
  • Wang, W., Zhai, M.G., Wang, S.J., and Santosh, M., 2016, Neoarchean crustal evolution in western Shandong province of the North China Craton: The role of 2.7–2.6Ga magmatism: Precambrian Research, v. 285, p. 170–185. 10.1016/j.precamres.2016.09.010
  • Wang, W., Zhang, X., Wang, S.J., and Santosh, M., 2017, Geochronology and geochemistry of Neoarchean granitoids from the western Shandong province, North China Craton, implications for crustal evolution and cratonization: Precambrian Research, v. 303, p. 749–763. 10.1016/j.precamres.2017.10.007
  • Wan, Y.S., Song, B., Liu, D.Y., Wilde, S.A., Wu, J.S., Shi, Y.R., Yin, X.Y., and Zhou, H.Y., 2006, SHRIMP U-Pb zircon geochronology of palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major late palaeoproterozoic tectonothermal event: Precambrian Research, v. 149, no. 3–4, p. 249–271. 10.1016/j.precamres.2006.06.006
  • Wu, F.Y., Zhang, Y.B., Yang, J.H., Xie, L.W., and Yang, Y.H., 2008, Zircon U-Pb and Hf isotopic constraints on the early Archean crustal evolution in Anshan of the North China Craton: Precambrian Research, v. 167, no. 3–4, p. 339–362. 10.1016/j.precamres.2008.10.002
  • Xiao, L., Zhang, H.F., Clemens, J.D., Wang, Q.W., Kan, Z.Z., Wang, K.M., Ni, P.Z., and Liu, X.M., 2007, Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution: Lithos, v. 96, no. 3, p. 436–452. 10.1016/j.lithos.2006.11.011
  • Xia, Q.X., Zheng, Y.F., Yuan, H.L., and Wu, F.Y., 2009, Contrasting Lu–Hf and U–Th–Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China: Lithos, v. 112, no. 3, p. 477–496. 10.1016/j.lithos.2009.04.015
  • Xie, G., Zhang, L., Li, J., Bao, Z., Wang, K., Chen, Q., Wang, L., and Wang, J., 2022, Genesis of high Ba-Sr yashan intrusion from the Jiaodong Peninsula, eastern China: Implications for the destruction of the North China Craton: Journal of Earth Science, v. 33, no. 3, p. 567–580. 10.1007/s12583-021-1587-8
  • Xiong, L.X., Adam, J., and Green, T.H., 2005, Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis - ScienceDirect: Chemical Geology, v. 218, no. 3–4, p. 339–359. 10.1016/j.chemgeo.2005.01.014
  • Xu, J.-F., Shinjo, R., Defant, M.J., Wang, Q., and Rapp, R.P., 2002, Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?: Geology, v. 30, no. 12, p. 1111–1114. 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
  • Yang, X., Liu, L., Wang, B., Du, Z., and Wang, Y., 2014, Formation of the huoqiu banded iron Formation (BIF), western Anhui province: Acta Geologica Sinica - English Edition, v. 88, no. s2, p. 127–129. 10.1111/1755-6724.12368_30
  • Yang, C.X., and Santosh, M., 2020, Ancient deep roots for Mesozoic world-class gold deposits in the north China craton: An integrated genetic perspective: Geoscience Frontiers, v. 11, no. 1, p. 203–214. 10.1016/j.gsf.2019.03.002
  • Yang, Q.Y., Santosh, M., Collins, A.S., and Teng, X.M., 2016, Microblock amalgamation in the North China craton: Evidence from Neoarchaean magmatic suite in the western margin of the Jiaoliao block: Gondwana Research, v. 31, p. 96–123. 10.1016/j.gr.2015.04.002
  • Yang, J., Wang, J., Zhang, Q., Chen, W., Pan, Z., Jiao, S., and Wang, S., 2016, Back-arc basin basalt (BABB) data mining: Comparison with MORB and IAB: Advances in Earth Science, v. 31, no. 1, p. 66–77.
  • Zhai, M.G., and Bian, A.G., 2001, Amalgamation of the supercontinent of the North China craton and its break up during late-middle Proterozoic: Science in China, v. 43, no. S1, p. 219–232. 10.1007/BF02911947
  • Zhai, M.G., Guo, J.H., and Liu, W.J., 2005, Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China craton: A review: Journal of Asian Earth Sciences, v. 24, no. 5, p. 547–561. 10.1016/j.jseaes.2004.01.018
  • Zhai, M.G., and Santosh, M., 2011, The early Precambrian odyssey of the North China craton: A synoptic overview: Gondwana Research, v. 20, no. 1, p. 6–25. 10.1016/j.gr.2011.02.005
  • Zhai, M.G., Zhu, X.Y., Zhou, Y.Y., Zhao, L., and Zhou, L.G., 2020, Continental crustal evolution and synchronous metallogeny through time in the North China craton: Journal of Asian Earth Sciences, v. 194, p. 104169. 10.1016/j.jseaes.2019.104169
  • Zhao, G.C., Sun, M., Wilde, S.A., and Li, S.Z., 2005, Late Archean to Paleoproterozoic evolution of the North China craton: Key issues revisited: Precambrian Research, v. 136, no. 2, p. 177–202. 10.1016/j.precamres.2004.10.002
  • Zhao, G.C., and Zhai, M.G., 2013, Lithotectonic elements of Precambrian basement in the North China craton: Review and tectonic implications: Gondwana Research, v. 23, no. 4, p. 1207–1240. 10.1016/j.gr.2012.08.016
  • Zhou, Y., and Zhai, M., 2022, Mantle plume-triggered rifting closely following Neoarchean cratonization revealed by 2.50–2.20 Ga magmatism across North China craton: Earth Science Review, v. 230, p. 104060. 10.1016/j.earscirev.2022.104060
  • Zhou, Y.Y., Zhao, T.P., Wang, C.Y., and Hu, G.H., 2011, Geochronology and geochemistry of 2.5 to 2.4 Ga granitic plutons from the southern margin of the North China craton: Implications for a tectonic transition from arc to post-collisional setting: Gondwana Research, v. 20, no. 1, p. 171–183. 10.1016/j.gr.2011.03.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.