232
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Paleoenvironmental evolution and organic matter accumulation of the lower Cambrian Maidiping marine black shales in the intracratonic basin, western margin of Sichuan Basin, South China

, , , , , , , , , , & show all
Pages 2249-2268 | Received 31 May 2023, Accepted 28 Oct 2023, Published online: 12 Nov 2023

References

  • Adachi, M., Yamamoto, K., and Sugisaki, R., 1986, Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity: Sedimentary Geology, v. 47, p. 125–148. 10.1016/0037-0738(86)90075-8
  • Algeo, T.J., and Ingall, E., 2007, Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 256, no. 3–4, p. 130–155. 10.1016/j.palaeo.2007.02.029
  • Algeo, T.J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J., and Maynard, J.B., 2011, Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic panthalassic ocean: Palaeogeography: Palaeoclimatology, Palaeoecology, v. 308, p. 65–83. 10.1016/j.palaeo.2010.07.007
  • Algeo, T.J., and Li, C., 2020, Redox classification and calibration of redox thresholds in sedimentary systems: Geochimica et Cosmochimica Acta, v. 287, p. 8–26. 10.1016/j.gca.2020.01.055
  • Algeo, T.J., and Liu, J., 2020, A re–assessment of elemental proxies for paleoredox analysis: Chemical Geology, v. 540, p. 119549. 10.1016/j.chemgeo.2020.119549
  • Algeo, T.J., and Lyons, T.W.J.P., 2006, Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions: Paleoceanography, v. 21, no. 1, p. PA1016. 10.1029/2004PA001112
  • Algeo, T.J., and Maynard, J.B., 2004, Trace–element behavior and redox facies in core shales of upper Pennsylvanian Kansas–type cyclothems: Chemical Geology, v. 206, p. 289–318. 10.1016/j.chemgeo.2003.12.009
  • Algeo, T.J., and Rowe, H., 2012, Paleoceanographic applications of trace–metal concentration data: Chemical Geology, v. v, p. 324–325, p. 6–18. 10.1016/j.chemgeo.2011.09.002
  • Algeo, T.J., and Tribovillard, N., 2009, Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation: Chemical Geology, v. 268, no. 3–4, p. 211–225. 10.1016/j.chemgeo.2009.09.001
  • Anderson, L.D., Delaney, M.L., and Faul, K.L., 2001, Carbon to phosphorus ratios in sediments: Implications for nutrient cycling: Global Biogeochemical Cycles, v. 15, no. 1, p. 65–79. 10.1029/2000GB001270
  • Bird, C.W., Lynch, J.M., Pirt, F.J., Reid, W.W., Brooks, C., and Middleditch, B.S.J.N., 1971, Steroids and squalene in methylococcus capsulatus grown on methane, Steroids and Squalene in Methylococcus Capsulatus Grown on Methane, v. 230, p. 473–474. 10.1038/230473a0.
  • Böning, P., Brumsack, H.–., Böttcher, M.E., Schnetger, B., Kriete, C., Kallmeyer, J., and Borchers, S.L., 2004, Geochemistry of Peruvian near–surface sediments: Geochimica et Cosmochimica Acta, v. 68, p. 4429–4451. 10.1016/j.gca.2004.04.027
  • Bottrell, S.H., and Newton, R.J., 2006, Reconstruction of changes in global sulfur cycling from marine sulfate isotopes: Earth–Science Reviews, v. 75, p. 59–83. 10.1016/j.earscirev.2005.10.004
  • Calvert, S.E., and Pedersen, T.F., 1993, Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record: Marine Geology, v. 113, no. 1, p. 67–88. 10.1016/0025-3227(93)90150-T.
  • Carminatti, M., Dias, J., and Wolff, B.J.O.T.C., 2009, From Turbidites to Carbonates: Breaking Paradigms in Deep Waters: Offshore Technology Conference, Houston, TX, 4–7 May, OTC 20124.
  • Cawood, P.A., Zhao, G., Yao, J., Wang, W., Xu, Y., and Wang, Y.J.E.–.R., 2017, Reconstructing South China in Phanerozoic and Precambrian supercontinents: Earth–Science Reviews, v. 186, p. 173–194. 10.1016/j.earscirev.2017.06.001
  • Cheng, M., Li, C., Zhou, L., Algeo, T.J., Zhang, F., Romaniello, S., Jin, C.S., Lei, L.D., Feng, L.J., and Jiang, S.Y.J.G.E.C.A., 2016, Marine Mo biogeochemistry in the context of dynamically euxinic mid–depth waters: A case study of the lower Cambrian Niutitang shales, South China: Geochimica et cosmochimica acta, v. 183, p. 79–93. 10.1016/j.gca.2016.03.035
  • Chen, Q., Sun, M., Long, X., Zhao, G., and Yuan, C.J.G.R., 2016, U–pb ages and hf isotopic record of zircons from the late Neoproterozoic and Silurian–Devonian sedimentary rocks of the western Yangtze block: Implications for its tectonic evolution and continental affinity: Gondwana Research, v. 31, p. 184–199. 10.1016/j.gr.2015.01.009
  • Chen, D., Wang, J., Qing, H., Yan, D., and Li, R., 2009, Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints: Chemical Geology, v. 258, p. 168–181. 10.1016/j.chemgeo.2008.10.016
  • Diaz, J., Ingall, E., Benitez–Nelson, C., Paterson, D., de Jonge, M.D., McNulty, I., and Brandes, J.A., 2008, Marine polyphosphate: A key player in geologic phosphorus sequestration: Science, v. 320, no. 5876, p. 652–655. 10.1126/science.1151751.
  • Domeier, M., 2018, Early Paleozoic tectonics of Asia: Towards a full–plate model: Geoscience Frontiers, v. 9, p. 789–862. 10.1016/j.gsf.2017.11.012
  • Dong, Y., and Santosh, M., 2016, Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China: Gondwana Research, v. 29, p. 1–40. 10.1016/j.gr.2015.06.009
  • Frank, A.B., Klaebe, R.M., Xu, L., and Frei, R., 2019, Redox fluctuations during the transition, Nanhua Basin, South China: Insights from Cr isotope and REE+Y data: Chemical Geology, v. 525, p. 321–333. 10.1016/j.chemgeo.2019.07.031
  • Gao, P., He, Z., Li, S., Lash, G.G., Li, B., Huang, B., and Yan, D., 2018, Volcanic and hydrothermal activities recorded in phosphate nodules from the lower Cambrian Niutitang Formation black shales in South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 505, p. 381–397. 10.1016/j.palaeo.2018.06.019
  • Gao, P., Li, S., Lash, G.G., Yan, D., Zhou, Q., and Xiao, X., 2021, Stratigraphic framework, redox history, and organic matter accumulation of an Early Cambrian intraplatfrom basin on the Yangtze platform, South China: Marine & Petroleum Geology, v. 130, p. 105095. 10.1016/j.marpetgeo.2021.105095
  • Gao, P., Liu, G., Jia, C., Young, A., Wang, Z., Wang, T., Zhang, P., and Wang, D., 2016, Redox variations and organic matter accumulation on the Yangtze carbonate platform during late Ediacaran–Early Cambrian: Constraints from petrology and geochemistry: Palaeogeography: Palaeoclimatology, Palaeoecology, v. 450, p. 91–110. 10.1016/j.palaeo.2016.02.058
  • Goldberg, T., Strauss, H., Guo, Q., and Liu, C., 2007, Reconstructing marine redox conditions for the Early Cambrian Yangtze platform: Evidence from biogenic sulphur and organic carbon isotopes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, p. 175–193. 10.1016/j.palaeo.2007.03.015
  • Gu, Z., Jian, X., Watts, A.B., Zhai, X., Liu, G., and Jiang, H., 2022, Formation and evolution of an Early Cambrian foreland basin in the northwest Yangtze block: South China: Journal of the Geological Society, v. v, p. 180. 10.1144/jgs2022-127
  • Han, Y., Ran, B., Santosh, M., Luo, C., Liu, S., Li, Z., Ye, Y., Song, J., Wang, H., and Ding, Y., 2022, Linking South China plate to Arabian margin of Gondwana: Significance for Cambrian global plate reconstruction: Journal of Asian Earth Sciences, v. 237, p. 105341. 10.1016/j.jseaes.2022.105341
  • Harris, N.B., Miskimins, J.L., and Mnich, C.A.J.T.L.E., 2011, Mechanical anisotropy in the Woodford shale, Permian Basin: Origin, magnitude, and scale: The Leading Edge, v. 30, no. 3, p. 284–291. 10.1190/1.3567259
  • Ingall, E., and Jahnke, R., 1997, Influence of water–column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis: Marine Geology, v. 139, p. 219–229. 10.1016/S0025-3227(96)00112-0
  • Jin, C., Li, C., Algeo, T.J., Planavsky, N.J., Cui, H., Yang, X., Zhao, Y., Zhang, X., and Xie, S., 2016, A highly redox–heterogeneous ocean in South China during the Early Cambrian (∼529–514 Ma): Implications for biota–environment co–evolution: Earth and Planetary Science Letters, v. 441, p. 38–51. 10.1016/j.epsl.2016.02.019
  • Jin, C., Li, C., Algeo, T.J., Planavsky, N.J., Cui, H., Yang, X., Zhao, Y., Zhang, X., Xie, S.J.E., and Letters, P.S., 2016, A highly redox–heterogeneous ocean in South China during the Early Cambrian (529–514Ma): Implications for Biota–Environment Co–Evolution, v. 441, p. 38–51. 10.1016/j.epsl.2016.02.019
  • Jin, C., Li, C., Algeo, T.J., Wu, S., Cheng, M., Zhang, Z., and Shi, W., 2020, Controls on organic matter accumulation on the early–Cambrian western Yangtze platform, South China: Marine & Petroleum Geology, v. 111, p. 75–87. 10.1016/j.marpetgeo.2019.08.005
  • Jones, B., and Manning, D., 1994, Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones: Chemical Geology, v. 111, p. 111–129. 10.1016/0009-2541(94)90085-X.
  • Kimura, H., and Watanabe, Y., 2001, Oceanic anoxia at the Precambrian–Cambrian boundary: Geology, v. 29, no. 11, p. 995. 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2.
  • Knoll, A.H., and Carroll, S.B., 1999, Early animal evolution: Emerging views from comparative biology and geology: Science, v. 284, no. 5423, p. 2129–2137. 10.1126/science.284.5423.2129
  • Lézin, C., Andreu, B., Pellenard, P., Bouchez, J.–., Emmanuel, L., Fauré, P., and Landrein, P., 2013, Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe: Chemical Geology, v. 341, p. 1–15. 10.1016/j.chemgeo.2013.01.003
  • Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., and Zhou, H., 2003, Geochronology of Neoproterozoic syn–rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia: Precambrian Research, v. 122, p. 85–109. 10.1016/S0301-9268(02)00208-5
  • Li, Z.X., Li, X.H., Zhou, H.W., and Kinny, P.D., 2002, Grenvillian continental collision in South China: New SHRIMP U–pb zircon results and implications for the configuration of Rodinia: Geology, v. 30, p. 163–166. 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
  • Li, C., Shi, W., Cheng, M., Jin, C., and Algeo, T.J., 2020, The redox structure of Ediacaran and Early Cambrian oceans and its controls: Science Bulletin, v. 65, no. 24, p. 2141–2149. 10.1016/j.scib.2020.09.023
  • Liu, J., and Algeo, T.J., 2020, Beyond redox: Control of trace–metal enrichment in anoxic marine facies by watermass chemistry and sedimentation rate: Geochimica et Cosmochimica Acta, v. 287, p. 296–317. 10.1016/j.gca.2020.02.037
  • Liu, S., Deng, B., Jansa, L., Zhong, Y., Sun, W., Song, J., Wang, G., Wu, J., Li, Z., and Tian, Y., 2017, The Early Cambrian Mianyang–Changning intracratonic sag and its control on Petroleum accumulation in the Sichuan Basin, China: Geofluids, v. 2017, p. 1–16. 10.1155/2017/6740892.
  • Liu, Z., Gao, B., Zhang, Y., Du, W., Feng, D., and Nie, H., 2017, Types and distribution of the shale sedimentary facies of the lower Cambrian in upper Yangtze area, South China: Petroleum Exploration and Development, v. 44, p. 20–31. 10.1016/S1876-3804(17)30004-6
  • Liu, S., Yang, Y., Deng, B., Zhong, Y., Wen, L., Sun, W., Li, Z., Jansa, L., Li, J., Song, J., Zhang, X., and Peng, H., 2020, Tectonic evolution of the Sichuan Basin, Southwest China: Earth–Science Reviews, v. 213, p. 103470. 10.1016/j.earscirev.2020.103470
  • Liu, Z., Yan, D., Yuan, D., Niu, X., and Fu, H.J., 2022, Multiple controls on the organic matter accumulation in Early Cambrian marine black shales, middle Yangtze Block: South China: Journal of Natural Gas Science and Engineering, v. 100, p. 104454. 10.1016/j.jngse.2022.104454
  • Li, Y., Zhang, T., Ellis, G.S., and Shao, D., 2017, Depositional environment and organic matter accumulation of upper Ordovician–lower Silurian marine shale in the upper Yangtze platform, South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 466, p. 252–264. 10.1016/j.palaeo.2016.11.037
  • Martin, E.L., Collins, W.J., and Kirkland, C.L.J.G., 2017, An Australian source for Pacific–gondwanan zircons: Implications for the assembly of northeastern Gondwana: Geology, v. 45, p. 699–702. 10.1130/G39152.1
  • Mclennan, S.M.J.G.G.G., 2001, Relationship between the trace element composition of sedimentary rocks and upper continental crust: Geochemistry, Geophysics, Geosystems, v. 2, p. 203–236. 10.1029/2000GC000109
  • Merdith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S., Foden, J.D., Archibald, D.B., Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D.J.G.R., Clark, C., and Müller, R.D., 2017, A full–plate global reconstruction of the Neoproterozoic: Gondwana Research, v. 50, p. 84–134. 10.1016/j.gr.2017.04.001
  • Moghadam, H.S., Khademi, M., Hu, Z., Stern, R.J., Santos, J.F., and Wu, Y., 2015, Cadomian (Ediacaran–Cambrian) arc magmatism in the ChahJam–biarjmand metamorphic complex (Iran): Magmatism along the northern active margin of Gondwana: Gondwana Research, v. 27, p. 439–452. 10.1016/j.gr.2013.10.014
  • Moreira, J.L.P., Madeira, C.V., Gil, J.A., and Machado, M.A.P., 2007, Bacia de Santos. Boletim de Geociências da Petrobras, v. 15, p. 531–549.
  • Murray, R.W., 1994, Chemical criteria to identify the depositional environment of chert: general principles and applications: Sedimentary Geology, v. 90, no. 3–4, p. 213–232. 10.1016/0037-0738(94)90039-6
  • Murray, R.W., and Leinen, M., 1993, Chemical transport to the seafloor of the equatorial Pacific ocean across a latitudinal transect at 135°W: Tracking sedimentary major, trace, and rare earth element fluxes at the equator and the intertropical convergence zone: Geochimica et Cosmochimica Acta, v. 57, no. 17, p. 4141–4163. 10.1016/0016-7037(93)90312-K
  • Nakagawa, Y., Takano, S., Firdaus, M.L., Norisuye, K., Hirata, T., Vance, D., and Sohrin, Y., 2012, The molybdenum isotopic composition of the modern ocean: Geochemical Journal, v. 46, no. 2, p. 131–141. 10.2343/geochemj.1.0158
  • Nance, W.B., and Taylor, S.R., 1976, Rare earth element patterns and crustal evolution—I. Australian post–Archean sedimentary rocks: Geochimica et Cosmochimica Acta, v. 40, p. 1539–1551. 10.1016/0016-7037(76)90093-4
  • Och, L.M., Shields–Zhou, G.A., Poulton, S.W., Manning, C., Thirlwall, M.F., Li, D., Chen, X., Ling, H., Osborn, T., and Cremonese, L., 2013, Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China: Precambrian Research, v. 225, p. 166–189. 10.1016/j.precamres.2011.10.005
  • Rachold, V., and Brumsack, H.–., 2001, Inorganic geochemistry of Albian sediments from the lower Saxony Basin NW Germany: Palaeoenvironmental constraints and orbital cycles: Palaeogeography: Palaeoclimatology, Palaeoecology, v. 174, p. 121–143. 10.1016/S0031-0182(01)00290-5
  • Rimmer, S.M., 2004, Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA): Chemical Geology, v. 206, p. 373–391. 10.1016/j.chemgeo.2003.12.029
  • Rowe, H.D., Loucks, R.G., Ruppel, S.C., and Rimmer, S.M., 2008, Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction: Chemical Geology, v. 257, no. 1–2, p. 16–25. 10.1016/j.chemgeo.2008.08.006
  • Schoepfer, S.D., Shen, J., Wei, H., Tyson, R.V., Ingall, E., and Algeo, T.J., 2015a, Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity: Earth Science Reviews, v. 149, p. 23–52. 10.1016/j.earscirev.2014.08.017
  • Schoepfer, S.D., Shen, J., Wei, H., Tyson, R.V., Ingall, E., and Algeo, T.J., 2015b, Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity: Earth–Science Reviews, v. 149, p. 23–52. 10.1016/j.earscirev.2014.08.017
  • Schrenk, M.O., Kelley, D.S., Delaney, J.R., and Baross, J.A., 2003, Incidence and diversity of microorganisms within the walls of an active deep–sea sulfide chimney: Applied & Environmental Microbiology, v. 69, p. 3580–3592. 10.1128/AEM.69.6.3580-3592.2003
  • Scott, C., and Lyons, T.W., 2012, Contrasting molybdenum cycling and isotopic properties in euxinic versus non–euxinic sediments and sedimentary rocks: Refining the paleoproxies: Chemical Geology, v. v, p. 324–325, p. 19–27. 10.1016/j.chemgeo.2012.05.012
  • Steiner, M., Li, G., Yi, Q., Zhu, M., and Erdtmann, B.D.J.P., 2007, Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze platform (China): Palaeoclimatology: Palaeoecology, v. 254, p. 67–99. 10.1016/j.palaeo.2007.03.046
  • Steiner, M., Wallis, E., Erdtmann, B.D., Zhao, Y., and Yang, R., 2001, Submarine–hydrothermal exhalative ore layers in black shales from South China and associated fossils — insights into a lower Cambrian facies and bio–evolution: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 169, p. 165–191. 10.1016/S0031-0182(01)00208-5
  • Suzuki, Y., Inagaki, F., Takai, K., Nealson, K.H., and Horikoshi, K.J.M.E., 2004, Microbial diversity in inactive chimney structures from deep–sea hydrothermal systems: Microbial Ecology, v. 47, p. 186–196. 10.1007/s00248-003-1014-y.
  • Sweere, T., van den Boorn, S., Dickson, A.J., and Reichart, G.–., 2016, Definition of new trace–metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations: Chemical Geology, v. 441, p. 235–245. 10.1016/j.chemgeo.2016.08.028
  • Sylvestre, G., Evine Laure, N.T., Gus Djibril, K.N., Arlette, D.S., Cyriel, M., Timoléon, N., and Jean Paul, N., 2017, A mixed seawater and hydrothermal origin of superior–type banded iron formation (BIF)–hosted Kouambo iron deposit, palaeoproterozoic nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry: Ore Geology Reviews, v. 80, p. 860–875. 10.1016/j.oregeorev.2016.08.021
  • Tada, R., and Iijima, A., 1992, Mineral composition and geochemistry of sediments from ODP leg 127 sites: Pangaea, v. 127, p. 1229–1260 .
  • Tribovillard, N., Algeo, T.J., Baudin, F., and Riboulleau, A., 2012, Analysis of marine environmental conditions based onmolybdenum–uranium covariation—applications to Mesozoic paleoceanography: Chemical Geology, v. v, p. 324–325, p. 46–58. 10.1016/j.chemgeo.2011.09.009
  • Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A., 2006, Trace metals as paleoredox and paleoproductivity proxies: An update: Chemical Geology, v. 232, no. 1–2, p. 12–32. 10.1016/j.chemgeo.2006.02.012
  • Wang, Z., Tan, J., Boyle, R., Hilton, J., Ma, Z., Wang, W., Lyu, Q., Kang, X., and Luo, W., 2020, Evaluating episodic hydrothermal activity in South China during the Early Cambrian: Implications for biotic evolution: Marine and Petroleum Geology, v. 117, p. 104355. 10.1016/j.marpetgeo.2020.104355
  • Wu, C., Zhang, L., Zhang, T., Tuo, J., Song, D., Liu, Y., Zhang, M., and Xing, L., 2020, Reconstruction of paleoceanic redox conditions of the lower Cambrian Niutitang shales in northern Guizhou: Upper Yangtze Region: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 538, p. 109457. 10.1016/j.palaeo.2019.109457
  • Xiao, B., Liu, S., Li, Z., Ran, B., Ye, Y., Yang, D., and Li, J., 2021, Geochemical characteristics of marine shale in the wufeng Formation–longmaxi Formation in the northern Sichuan Basin, South China and its implications for depositional controls on organic matter: Journal of Petroleum Science and Engineering, v. 203, p. 108618. 10.1016/j.petrol.2021.108618
  • Xiao, B., Liu, S.G., Ran, B., and Li, Z.W., 2019, Geochemistry and sedimentology of the upper Ordovician–lower Silurian black shale in the northern margin of the upper Yangtze platform, South China: Implications for depositional controls on organic–matter accumulation: Australian Journal of Earth Sciences, v. 67, p. 129–150. 10.1080/08120099.2019.1626765
  • Yamamoto, K., 1987, Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes: Sedimentary Geology, v. 52, no. 1–2, p. 65–108. 10.1016/0037-0738(87)90017-0
  • Yan, D., Chen, D., Wang, Q., and Wang, J., 2012, Predominance of stratified anoxic Yangtze sea interrupted by short–term oxygenation during the ordo–Silurian transition: Chemical Geology, v. 291, p. 69–78. 10.1016/j.chemgeo.2011.09.015
  • Yeasmin, R., Chen, D., Fu, Y., Wang, J., Guo, Z., and Guo, C., 2017, Climatic–oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (age 2 through 3) in the mid–upper Yangtze block, NE Guizhou: South China: Journal of Asian Earth Sciences, v. 134, p. 365–386. 10.1016/j.jseaes.2016.08.019
  • Young, G.M., and Nesbitt, H.W., 1998, Processes controlling the distribution of Ti and al in weathering profiles, siliciclastic sediments and sedimentary rocks: Journal of Sedimentary Research, v. 68, p. 448–455. 10.2110/jsr.68.448.
  • Zhou, M.F., Ma, Y., Yan, D.P., Xia, X., Zhao, J.H., and Sun, M.J.P.R., 2006, The Yanbian terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze block: Precambrian Research, v. 144, no. 1–2, p. 19–38. 10.1016/j.precamres.2005.11.002.
  • Zhou, G.X., Wei, G.Q., Guo–Yi, H.U., Sai–Jun, W.U., Tian, Y.J., and Dong, C.Y., 2020, The development setting and the organic matter enrichment of the lower Cambrian shales from the western rift trough in Sichuan Basin: Natural Gas Geoscience, v. 31, p. 498–506.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.