327
Views
3
CrossRef citations to date
0
Altmetric
Physiology, biochemistry, and chemical ecology

The mite Varroa destructor lowers the stinging response threshold of honey bees (Apis mellifera)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 184-188 | Received 18 Feb 2021, Accepted 06 Jun 2021, Published online: 19 Aug 2021

References

  • Bowen-Walker, P. L., & Gunn, A. (2001). The effect of the ectoparasitic mite, Varroa destructor on adult worker honey bee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomologia Experimentalis et Applicata, 101(3), 207–217. https://doi.org/10.1046/j.1570-7458.2001.00905.x
  • Breed, M. D., Guzman-Novoa, E., & Hunt, G. J. (2004). Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annual Review of Entomology, 49, 271–298. https://doi.org/10.1146/annurev.ento.49.061802.123155
  • Dietemann, V., Nazzi, F., Martin, S. J., Anderson, D. L., Locke, B., Delaplane, K. S., Wauquiez, Q., Tannahill, C., Frey, E., Ziegelmann, B., Rosenkranz, P., & Ellis, J. D. (2013). Standard methods for varroa research. Journal of Apicultural Research, 52(1), 1–54. https://doi.org/10.3896/IBRA.1.52.1.09
  • Emsen, B., Hamiduzzaman, M. M., Goodwin, P. H., & Guzman-Novoa, E. (2015). Lower virus infections in Varroa destructor-infested and uninfested brood and adult honey bees (Apis mellifera) of a low mite population growth colony compared to a high mite population growth colony. PLoS One, 10(2), e0118885. https://doi.org/10.1371/journal.pone.0118885
  • Genersch, E., & Aubert, M. (2010). Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Veterinary Research, 41(6), 54. https://doi.org/10.1051/vetres/2010027
  • Guzman-Novoa, E., Morfin, N., De la Mora, A., Macías-Macías, J. O., Tapia-González, J. M., Contreras-Escareño, F., Medina-Flores, C. A., Correa-Benítez, A., & Quezada-Euán, J. J. G. (2020). The process and outcome of the Africanization of honey bees in Mexico: Lessons and future directions. Frontiers in Ecology and Evolution, 8, 1–17. https://doi.org/10.3389/fevo.2020.608091
  • Hamiduzzaman, M. H., Emsen, B., Hunt, G. J., Subramanyam, S., Williams, C. E., Tsuruda, J. M., & Guzman-Novoa, E. (2017). Differential gene expression associated with honey bee grooming behavior in response to Varroa mites. Behavior Genetics, 47(3), 335–344. https://doi.org/10.1007/s10519-017-9834-6
  • Iqbal, J., & Mueller, U. (2007). Virus infection causes specific learning deficits in honey bee foragers. Proceedings of the Royal Society B: Biological Sciences, 274(1617), 1517–1521. https://doi.org/10.1098/rspb.2007.0022
  • Koleoglu, G., Goodwin, P. H., Reyes-Quintana, M., Hamiduzzaman, M. M., & Guzman-Novoa, E. (2017). Effect of Varroa destructor, wounding and varroa homogenate on gene expression in brood and adult honey bees. PLoS One, 12(1), e0169669. https://doi.org/10.1371/journal.pone.0169669
  • Koleoglu, G., Goodwin, P. H., Reyes-Quintana, M., Hamiduzzaman, M., Md., & Guzman-Novoa, E. (2018). Varroa destructor parasitism reduces hemocyte concentrations and prophenol oxidase gene expression in bees from two populations. Parasitology Research, 117(4), 1175–1183. https://doi.org/10.1007/s00436-018-5796-8
  • Kolmes, S. A., & Fergusson-Kolmes, L. A. (1989). Measurements of stinging behaviour in individual worker honey bees (Apis mellifera L.). Journal of Apicultural Research, 28(2), 71–78. https://doi.org/10.1080/00218839.1989.11100824
  • Kralj, J., Brockmann, A., Fuchs, S., & Tautz, J. (2007). The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers, Apis mellifera L. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 193(3), 363–370. https://doi.org/10.1007/s00359-006-0192-8
  • Kralj, J., & Fuchs, S. (2006). Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie, 37(5), 577–587. https://doi.org/10.1051/apido:2006040
  • McDonnell, C. M., Alaux, C., Parrinello, H., Desvignes, J. P., Crauser, D., Durbesson, E., Beslay, D., & Le Conte, Y. (2013). Ecto- and endoparasite induce similar chemical and brain neurogenomic responses in the honey bee (Apis mellifera). BMC Ecology, 13, 25. https://doi.org/10.1186/1472-6785-13-25
  • Morfin, N., Goodwin, P. H., & Guzman-Novoa, E. (2020a). Interaction of field realistic doses of clothianidin and Varroa destructor parasitism on adult honey bee (Apis mellifera L.) health and neural gene expression, and antagonistic effects on differentially expressed genes. PLoS One, 15(2), e0229093. https://doi.org/10.1371/journal.pone.0229030
  • Morfin, N., Goodwin, P. H., & Guzman-Novoa, E. (2020b). The combined effects of Varroa destructor parasitism and exposure to neonicotinoids affects honey bee (Apis mellifera L.) memory and gene expression. Biology, 9, 237. https://doi.org/10.3390/biology9090237
  • Morfin, N., Goodwin, P. H., Hunt, G. J., & Guzman-Novoa, E. (2019). Effects of sublethal doses of clothianidin and/or V. destructor on honey bee (Apis mellifera) self-grooming behavior and associated gene expression. Scientific Reports, 9(1), 5196. https://doi.org/10.1038/s41598-019-41365-0
  • Münch, D., Ihle, K. E., Salmela, H., & Amdam, G. V. (2015). Vitellogenin in the honey bee brain: Atypical localization of a reproductive protein that promotes longevity. Experimental Gerontology, 71, 103–108. https://doi.org/10.1016/j.exger.2015.08.001
  • Natsopoulou, M. E., McMahon, D. P., & Paxton, R. J. (2016). Parasites modulate within-colony activity and accelerate the temporal polyethism schedule of a social insect, the honey bee. Behavioral Ecology and Sociobiology, 70, 1019–1031. https://doi.org/10.1007/s00265-015-2019-5
  • Navajas, M., Migeon, A., Alaux, C., Martin-Magniette, M. L., Robinson, G. E., Evans, J. D., Cros-Arteil, S., Crauser, D., & Le Conte, Y. (2008). Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics, 9, 301–312. https://doi.org/10.1186/1471-2164-9-301
  • Nouvian, M., Reinhard, J., & Giurfa, M. (2016). The defensive response of the honey bee Apis mellifera. The Journal of Experimental Biology, 219(Pt 22), 3505–3517. https://doi.org/10.1242/jeb.143016
  • Núñez, J., Maldonado, H., Miralto, A., & Balderrama, N. (1983). The stinging response of the honey bee: Effects of morphine, naloxone and some opioid peptides. Pharmacology Biochemistry and Behavior, 19(6), 921–924. https://doi.org/10.1016/0091-3057(83)90391-X
  • Paxton, R. J., Sakamoto, C. H., & Rugiga, F. C. N. (1994). Modification of honey bee (Apis mellifera L.) stinging behaviour by within-colony environment and age. Journal of Apicultural Research, 33(2), 75–82. https://doi.org/10.1080/00218839.1994.11100853
  • Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., Lim, D., Joklik, J., Cicero, J. M., Ellis, J. D., Hawthorne, D., & vanEngelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1792–1801. https://doi.org/10.1073/pnas.1818371116
  • Reyes-Quintana, M., Espinosa-Montaño, L. G., Prieto-Merlos, D., Koleoglu, G., Petukhova, T., Correa-Benítez, A., & Guzman-Novoa, E. (2019). Impact of Varroa destructor and deformed wing virus on emergence, cellular immunity, wing integrity and survivorship of Africanized honey bees in Mexico. Journal of Invertebrate Pathology, 164, 43–48. https://doi.org/10.1016/j.jip.2019.04.009
  • Schmid-Hempel, P. (1998). Parasites in social insects (Vol. 60). Princeton University Press.
  • Shah, K. S., Evans, E. C., & Pizzorno, M. C. (2009). Localization of deformed wing virus (DWV) in the brains of the honey bee, Apis mellifera Linnaeus. Virology Journal, 6, 182–187. https://doi.org/10.1186/1743-422X-6-182
  • Traniello, I. M., Bukhari, S. A., Kevill, J., Ahmed, A. C., Hamilton, A. R., Naeger, N. L., Schroeder, D. C., & Robinson, G. E. (2020). Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Scientific Reports, 10, 1–12. https://doi.org/10.1038/s41598-020-59808-4
  • Uribe-Rubio, J. L., Guzman-Novoa, E., Vázquez-Peláez, C. G., & Hunt, G. J. (2008). Genotype, task specialization, and nest environment influence the stinging response thresholds of individual Africanized and European honey bees to electrical stimulation. Behavior Genetics, 38(1), 93–100. https://doi.org/10.1007/s10519-007-9177-9
  • Uribe-Rubio, J. L., Petukhova, T., & Guzman-Novoa, E. (2013). Genotype and task influence stinging response thresholds of honey bee (Apis mellifera L.) workers of African and European descent. Open Journal of Ecology, 03(04), 279–283. https://doi.org/10.4236/oje.2013.34032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.