292
Views
7
CrossRef citations to date
0
Altmetric
BACTERIAL BROOD DISEASES

Fatty acids and their derivatives from Chlorella vulgaris extracts exhibit in vitro antimicrobial activity against the honey bee pathogen Paenibacillus larvae

ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 310-322 | Received 06 May 2021, Accepted 13 Jul 2021, Published online: 09 Nov 2021

References

  • Alippi, A. M., Albo, G. N., Reynaldi, F. J., & De Giusti, M. R. (2005). In vitro and in vivo susceptibility of the honeybee bacterial pathogen Paenibacillus larvae subsp. Larvae to the antibiotic tylosin. Veterinary Microbiology, 109(1–2), 47–55. https://doi.org/10.1016/j.vetmic.2005.03.008
  • Alonso-Salces, R. M., Cugnata, N. M., Guaspari, E., Pellegrini, M. C., Aubone, I., De Piano, F. G., Antunez, K., & Fuselli, S. R. (2017). Natural strategies for the control of Paenibacillus larvae, the causative agent of American foulbrood in honey bees: A review. Apidologie, 48(3), 387–400. https://doi.org/10.1007/s13592-016-0483-1
  • Al-Saif, S. S., Abdel-Raouf, N., El-Wazanani, H. A., & Aref, I. A. (2014). Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi Journal of Biological Sciences, 21(1), 57–64. https://doi.org/10.1016/j.sjbs.2013.06.001
  • Aupinel, P., Fortini, D., Dufour, H., Tasei, J., Michaud, B., & Odoux, F. (2005). Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae.
  • Bai, S. C., Koo, J. W., Kim, K. W., & Kim, S. K. (2001). Effects of Chlorella powder as a feed additive on growth performance in juvenile Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquaculture Research, 32, 92–98. https://doi.org/10.1046/j.1355-557x.2001.00008.x
  • Bassi, S., Formato, G., Milito, M., Trevisiol, K., Salogni, C., & Carra, E. (2015). Phenotypic characterization and ERIC-PCR based genotyping of Paenibacillus larvae isolates recovered from American foulbrood outbreaks in honey bees from Italy. The Veterinary Quarterly, 35(1), 27–32. https://doi.org/10.1080/01652176.2014.993095
  • Brødsgaard, C. J., Ritter, W., & Hansen, H. (1998). Response of in vitro reared honey bee larvae to various doses of Paenibacillus larvae larvae spores. Apidologie, 29(6), 569–578. https://doi.org/10.1051/apido:19980609
  • Bzdil, J. (2007). Detection of Paenibacillus larvae Spores in the debris and wax of honey bee by the tween 80 method. Acta Veterinaria Brno, 76(4), 643–648. https://doi.org/10.2754/avb200776040643
  • Catarina Guedes, A., Barbosa, C. R., Amaro, H. M., Pereira, C. I., & Xavier Malcata, F. (2011). Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. International Journal of Food Science & Technology, 46(4), 862–870. https://doi.org/10.1111/j.1365-2621.2011.02567.x
  • Chaimanee, V., Thongtue, U., Sornmai, N., Songsri, S., & Pettis, J. S. (2017). Antimicrobial activity of plant extracts against the honeybee pathogens, Paenibacillus larvae and Ascosphaera apis and their topical toxicity to Apis mellifera adults. Journal of Applied Microbiology, 123(5), 1160–1167. https://doi.org/10.1111/jam.13579
  • Chan, Q. W., Melathopoulos, A. P., Pernal, S. F., & Foster, L. J. (2009). The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae [Research Support, Non-U.S. Gov't]. BMC Genomics., 10(1), 387. https://doi.org/10.1186/1471-2164-10-387
  • Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. Oct). https://doi.org/10.1128/CMR.12.4.564
  • Crailsheim, K., Brodschneider, R., Aupinel, P., Behrens, D., Genersch, E., Vollmann, J., & Riessberger-Gallé, U. (2015). Standard methods for artificial rearing of Apis mellifera Larvae. Journal of Apicultural Research, 52(1), 1–16. Article 52.1.05. https://doi.org/10.3896/IBRA.1.52.1.05
  • de Graaf, D. C., Alippi, A. M., Antúnez, K., Aronstein, K. A., Budge, G., De Koker, D., De Smet, L., Dingman, D. W., Evans, J. D., Foster, L. J., Fünfhaus, A., Garcia-Gonzalez, E., Gregore, A., Human, H., Murray, K. D., Nguyen, B. K., Poppinga, L., Spivak, M., van Engelsdorp, D., Wilkins, S., & Genersch, E. (2015). Standard methods for American foulbrood research. Journal of Apicultural Research, 52(1), 1–28. Article 52.1.11. https://doi.org/10.3896/IBRA.1.52.1.11
  • de Morais, M. G., Vaz, B. d S., de Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed Research International, 2015, 835761 https://doi.org/10.1155/2015/835761
  • Doucha, J., & Lívanský, K. (2011). Production of high-density Chlorella culture grown in fermenters. Journal of Applied Phycology, 24(1), 35–43. https://doi.org/10.1007/s10811-010-9643-2
  • Doull, K. M. (1975). Pollen supplement – Methods of feeding supplements. American Bee Journal, 115(2), 54–55.
  • Eloff, J. N. (1998). Which extractant should be used for the screening and isolation of antimicrobial components from plants? Journal of Ethnopharmacology, 60(1), 1–8.
  • Eloff, J. N. (2019). Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement Altern Med, 19(1), 106 https://doi.org/10.1186/s12906-019-2519-3
  • Eremia, N., Bahcivanji, M., & Zagareanu, A. (2013). Study of influence of algal "Chlorella Vulgaris" suspension on growth and productivity of bees families. Lucrări Științifice – Universitatea de Științe Agricole și Medicină Veterinară, Seria Zootehnie, 59, 148–152.
  • Feldlaufer, M. F., Knox, D. A., Lusby, W. R., & Shimanuki, H. (1993). Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood disease. Apidologie, 24(2), 95–99. https://doi.org/10.1051/apido:19930202
  • Flesar, J., Havlik, J., Kloucek, P., Rada, V., Titera, D., Bednar, M., Stropnicky, M., & Kokoska, L. (2010). In vitro growth-inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees. Veterinary Microbiology, 145(1–2), 129–133. https://doi.org/10.1016/j.vetmic.2010.03.018
  • Genersch, E. (2010). American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. Journal of Invertebrate Pathology, 103(Suppl 1), S10–S19. https://doi.org/10.1016/j.jip.2009.06.015
  • Genersch, E., Forsgren, E., Pentikainen, J., Ashiralieva, A., Rauch, S., Kilwinski, J., & Fries, I. (2006). Reclassification of Paenibacillus larvae subsp. Pulvifaciens and Paenibacillus larvae subsp. Larvae as Paenibacillus larvae without subspecies differentiation. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 3), 501–511. https://doi.org/10.1099/ijs.0.63928-0
  • Hrouzek, P., Kuzma, M., Černý, J., Novák, P., Fišer, R., Simek, P., Lukešová, A., & Kopecký, J. (2012). The cyanobacterial cyclic lipopeptides puwainaphycins F/G are inducing necrosis via cell membrane permeabilization and subsequent unusual actin relocalization. Chemical Research in Toxicology, 25(6), 1203–1211. https://doi.org/10.1021/tx300044t
  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009
  • Ibañez, E., & Cifuentes, A. (2013). Benefits of using algae as natural sources of functional ingredients. Journal of the Science of Food and Agriculture, 93(4), 703–709.
  • Jebasingh, S. E. J., Rosemary, S., Elaiyaraja, S., Sivaraman, K., Lakshmikandan, M., Murugan, A., & Raja, P. (2011). Potential antibacterial activity of selected green and red seaweeds. Journal of Pharmaceutical and Biomedical Sciences, 5(5), 1–7.
  • Jehlík, T., Kodrík, D., Krištůfek, V., Koubová, J., Sábová, M., Danihlík, J., Tomčala, A., & Čapková Frydrychová, R. (2019). Effects of Chlorella sp. on biological characteristics of the honey bee Apis mellifera. Apidologie, 50(4), 564–577. https://doi.org/10.1007/s13592-019-00670-3
  • Kapuścik, A., Hrouzek, P., Kuzma, M., Bártová, S., Novák, P., Jokela, J., Pflüger, M., Eger, A., Hundsberger, H., & Kopecký, J. (2013). Novel aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. ChemBioChem, 14(17), 2329–2337. https://doi.org/10.1002/cbic.201300246
  • Karpiński, T. M., & Adamczak, A. (2019). Fucoxanthin – An antibacterial carotenoid. Antioxidants (Antioxidants), 8(8), 239. https://doi.org/10.3390/antiox8080239
  • Lamminen, M., Halmemies-Beauchet-Filleau, A., Kokkonen, T., Jaakkola, S., & Vanhatalo, A. (2019). Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Animal Feed Science and Technology, 247, 112–126. https://doi.org/10.1016/j.anifeedsci.2018.11.005
  • Li, Y.-X., Wijesekara, I., Li, Y., & Kim, S.-K. (2011). Phlorotannins as bioactive agents from brown algae. Process Biochemistry, 46(12), 2219–2224. https://doi.org/10.1016/j.procbio.2011.09.015
  • Liu, J., & Chen, F. (2016). Biology and industrial applications of chlorella: Advances and prospects. Advances in Biochemical Engineering/Biotechnology, 153, 1–35. https://doi.org/10.1007/10_2014_286
  • Loncaric, I., Derakhshifar, I., Oberlerchner, J. T., Koglberger, H., & Moosbeckhofer, R. (2009). Genetic diversity among isolates of Paenibacillus larvae from Austria. Journal of Invertebrate Pathology, 100(1), 44–46. https://doi.org/10.1016/j.jip.2008.09.003
  • Machu, L., Misurcova, L., Ambrozova, J. V., Orsavova, J., Mlcek, J., Sochor, J., & Jurikova, T. (2015). Phenolic content and antioxidant capacity in algal food products. Molecules (Basel, Switzerland), 20(1), 1118–1133. https://doi.org/10.3390/molecules20011118
  • Mann, C. M., & Markham, J. L. (1998). A new method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology, 84(4), 538–544. https://doi.org/10.1046/j.1365-2672.1998.00379.x
  • Mariscal, A., Lopez-Gigosos, R. M., Carnero-Varo, M., & Fernandez-Crehuet, J. (2009). Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Applied Microbiology and Biotechnology, 82(4), 773–783. https://doi.org/10.1007/s00253-009-1879-x
  • Masojidek, J., Kopecky, J., Giannelli, L., & Torzillo, G. (2011). Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. Journal of Industrial Microbiology and Biotechnology, 38(2), 307–317. https://doi.org/10.1007/s10295-010-0774-x
  • Masojidek, J., & Prasil, O. (2010). The development of microalgal biotechnology in the Czech Republic. Journal of Industrial Microbiology and Biotechnology, 37(12), 1307–1317. https://doi.org/10.1007/s10295-010-0802-x
  • Mohy El-Din, S. M., & El-Ahwany, A. M. D. (2018). Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). Journal of Taibah University for Science, 10(4), 471–484. https://doi.org/10.1016/j.jtusci.2015.06.004
  • Mutinelli, F. (2003). European legislation governing the authorization of veterinary medicinal products with particular reference to the use of drugs for the control of honey bee…. Apiacta, 38, 156–168.
  • Özkirim, A., Keskin, N., Kürkçüoğlu, M., & Başer, K. H. C. (2012). Evaluation of some essential oils as alternative antibiotics against American foulbrood agent Paenibacillus larvaeon honey bees Apis mellifera L. Journal of Essential Oil Research, 24(5), 465–470. https://doi.org/10.1080/10412905.2012.703504
  • Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037
  • Ratnoglik, S. L., Aoki, C., Sudarmono, P., Komoto, M., Deng, L., Shoji, I., Fuchino, H., Kawahara, N., & Hotta, H. (2014). Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus. Microbiology and Immunology, 58(3), 188–194. https://doi.org/10.1111/1348-0421.12133
  • Reynaldi, F. J., Lacunza, J., Alippi, A. M., & Rule, R. (2010). [Binding of tylosin, tilmicosin and oxytetracycline to proteins from honeybees, larvae and beehive products]. Revista Argentina de Microbiología, 42(4), 279–283. (Union de los antibioticos tilosina, tilmicosina y oxitetraciclina a proteinas presentes en abejas, larvas y productos de la colmena de Apis mellifera L.). https://doi.org/10.1590/S0325-75412010000400008
  • Ricigliano, V. A. (2020). Microalgae as a promising and sustainable nutrition source for managed honey bees. Archives of Insect Biochemistry and Physiology, 104(1), e21658. https://doi.org/10.1002/arch.21658
  • Ricigliano, V. A., & Simone-Finstrom, M. (2020). Nutritional and prebiotic efficacy of the microalga Arthrospira platensis (spirulina) in honey bees. Apidologie, 51(5), 898–910. https://doi.org/10.1007/s13592-020-00770-5
  • Salem, O. M. A., E. M., Hoballah, Ghazi, S. M. & Hanna, S. N. (2014). Antimicrobial activity of microalgal extracts with special emphasize on Nostoc sp. Life Science Journal, 11 (12), 752–758.
  • Shannon, E., & Abu-Ghannam, N. (2016). Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine Drugs, 14(4), 81. https://doi.org/10.3390/md14040081
  • Silva, A., Silva, S. A., Carpena, M., Garcia-Oliveira, P., Gullon, P., Barroso, M. F., Prieto, M. A., & Simal-Gandara, J. (2020). Macroalgae as a source of valuable antimicrobial compounds: Extraction and applications. Antibiotics (Antibiotics), 9(10), 642. https://doi.org/10.3390/antibiotics9100642
  • Smith, K. M., Loh, E. H., Rostal, M. K., Zambrana-Torrelio, C. M., Mendiola, L., & Daszak, P. (2013). Pathogens, pests, and economics: Drivers of honey bee colony declines and losses. EcoHealth, 10(4), 434–445. https://doi.org/10.1007/s10393-013-0870-2
  • Thomas, N. V., & Kim, S. K. (2011). Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environmental Toxicology and Pharmacology, 32(3), 325–335. https://doi.org/10.1016/j.etap.2011.09.004
  • Tomek, P., Hrouzek, P., Kuzma, M., Sykora, J., Fiser, R., Cerny, J., Novak, P., Bartova, S., Simek, P., Hof, M., Kavan, D., & Kopecky, J. (2015). Cytotoxic lipopeptide muscotoxin A, isolated from soil cyanobacterium desmonostoc muscorum, permeabilizes phospholipid membranes by reducing their r fluidity. Chemical Research in Toxicology, 28(2), 216–224. https://doi.org/10.1021/tx500382b
  • Vanengelsdorp, D., & Meixner, M. D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103(Suppl. 1), S80–S95. https://doi.org/10.1016/j.jip.2009.06.011
  • Villasenor, I. M., & Carino, F. A. (2011). Antimicrobial activity of new phorbins from Jatropha curcas Linn. (Euphorbiaceae) Leaves. Zeitschrift fur Naturforschung – Section C Journal of Biosciences, 66(9), 441–446. https://doi.org/10.1515/znc-2011-9-1001
  • Voráčová, K., Hájek, J., Mareš, J., Urajová, P., Kuzma, M., Cheel, J., Villunger, A., Kapuscik, A., Bally, M., Novák, P., Kabeláč, M., Krumschnabel, G., Lukeš, M., Voloshko, L., Kopecký, J., Hrouzek, P., & Shen, H.-M. (2017). The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells. PLoS ONE, 12(3), e0172850. https://doi.org/10.1371/journal.pone.0172850
  • Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. https://doi.org/10.1038/nprot.2007.521

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.