213
Views
4
CrossRef citations to date
0
Altmetric
Genetics and Breeding

Cytotaxonomy and karyotype evolution in Neotropical Meliponini (Hymenoptera: Apidae) inferred by chromosomal mapping of 18S rDNA and five microsatellites

ORCID Icon, , & ORCID Icon
Pages 208-218 | Received 07 Jan 2022, Accepted 01 Aug 2022, Published online: 16 Feb 2023

References

  • Aguiar, H. J. A. C., Barros, L. A. C., Alves, D. R., Mariano, C. D. S. F., Delabie, J. H. C., & Pompolo, S. G. (2017). Cytogenetic studies on populations of Camponotus rufipes (Fabricius, 1775) and Camponotus renggeri Emery, 1894 (Formicidae: Formicinae). PloS One, 12(5), e0177702. https://doi.org/10.1371/journal.pone.0177702
  • Ahmad, S. F., Jehangir, M., Cardoso, A. L., Wolf, I. R., Margarido, V. P., Cabral-de-Mello, D. C., O'Neill, R., Valente, G. T., & Martins, C. (2020). B chromosomes of multiple species have intense evolutionary dynamics and accumulated genes related to important biological processes. BMC Genomics, 21(1), 656. https://doi.org/10.1186/s12864-020-07072-1
  • Andrade-Souza, V., Duarte, O. M. P., Martins, C. C. C., Santos, I. S., Costa, M. G. C., & Costa, M. A. (2018). Comparative molecular cytogenetics in Melipona Illiger species (Hymenoptera, Apidae). Sociobiology, 65, 696–705. https://doi.org/10.13102/sociobiology.v65i4.3480
  • Banaei-Moghaddam, A. M., Martis, M. M., Macas, J., Gundlach, H., Himmelbach, A., Altschmied, L., Mayer, K. F. X., & Houben, A. (2015). Genes on B chromosomes: Old questions revisited with new tools. Biochimica et Biophysica Acta, 1849(1), 64–70. https://doi.org/10.1016/j.bbagrm.2014.11.007
  • Barth, A., Fernandes, A., Pompolo, S. G., & Costa, M. A. (2011). Occurrence of B chromosomes in Tetragonisca Latreille, 1811 (Hymenoptera, Apidae, Meliponini): A new contribution to the cytotaxonomy of the genus. Genetics and Molecular Biology, 34(1), 77–79. https://doi.org/10.1590/S1415-47572010005000100
  • Bolzan, A. D. (2017). Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutation Research, 773, 51–65. https://doi.org/10.1016/j.mrrev.2017.04.002
  • Brito, R. M., Pompolo, S. G., Magalhães, M. F. M., Barros, E. G., & Sakamoto-Hojo, E. T. (2005). Cytogenetic characterization of two Partamona species (Hymenoptera, Apinae, Meliponini) by fluorochrome staining and localization of 18S rDNA clusters by FISH. Cytologia, 70, 373–380. https://doi.org/10.1508/cytologia.70.373
  • Camacho, J. P. M. (2004). B chromosomes in the eukaryote genome. Cytogenetic and Genome Research, 106(2–4), 147–410. https://doi.org/10.1159/isbn.978-3-318-01132-6
  • Camacho, J. P. M., Bakkali, M., Corral, J. M., Cabrero, J., Lopez-Leon, M. D., Aranda, I., Martín-Alganza, A., & Perfectti, F. (2002). Host recombination is dependent on the degree of parasitism. Proceedings of Biological Sciences, 269(1505), 2173–2177. https://doi.org/10.1098/rspb.2002.2135
  • Camacho, J. P. M., Sharbel, T. F., & Beukeboom, L. W. (2000). B-chromosome evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355(1394), 163–178. https://doi.org/10.1098/rstb.2000.0556
  • Camargo, J. M. F., & Pedro, S. R. M. (2013). Meliponini Lepeletier, 1836. In: Moure JS, Urban D, Melo GAR (orgs) Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region – online version. Retrieved February 07, 2019, from http://www.moure.cria.org.br/catalogue
  • Cardoso, D. C., & Cristiano, M. P. (2021). Karyotype diversity, mode, and tempo of the chromosomal evolution of Attina (Formicidae: Myrmicinae: Attini): Is there an upper limit to chromosome number? Insects, 12, 1084. https://doi.org/10.3390/insects12121084
  • Cardoso, D. C., Heinze, J., Moura, M. N., & Cristiano, M. P. (2018). Chromosomal variation among populations of a fungus-farming ant: Implications for karyotype evolution and potential restriction to gene flow. BMC Evolutionary Biology, 18(1), 146. https://doi.org/10.1186/s12862-018-1247-5
  • Coghlan, A., Eichler, E. E., Oliver, S. G., Paterson, A. H., & Stein, L. (2005). Chromosome evolution in eukaryotes: A multi-kingdom perspective. Trends in Genetics: TIG, 21(12), 673–682. https://doi.org/10.1016/j.tig.2005.09.009
  • Cortopassi-Laurino, M., Imperatriz-Fonseca, V. L., Roubik, D. W., Dollin, A., Heard, T., Aguilar, I., Venturieri, G. C., Eardley, C., & Nogueira-Neto, P. (2006). Global meliponiculture: Challenges and opportunities. Apidologie, 37, 275–292. https://doi.org/10.1051/apido:2006027
  • Cristiano, M. P., Cardoso, D. C., & Fernandes-Salomão, T. M. (2013). Cytogenetic and molecular analyses reveal a divergence between Acromyrmex striatus (Roger, 1863) and other congeneric species: Taxonomic implications. PloS One, 8(3), e59784. https://doi.org/10.1371/journal.pone.0059784
  • Cunha, M. S. (2021a). Cytogenetic diversity in Apidae (Hymenoptera) focusing on the chromosomal evolution of the Meliponini tribe [Doctoral thesis]. Federal University of Vicosa. https://www.locus.ufv.br/bitstream/123456789/28155/1/texto%20completo.pdf
  • Cunha, M. S., Campos, L. A. O., & Lopes, D. M. (2020). Insights into the heterochromatin evolution in the genus Melipona (Apidae: Meliponini). Insectes Sociaux, 67, 391–398. https://doi.org/10.1007/s00040-020-00773-6
  • Cunha, M. S., Cardoso, D. C., Cristiano, M. P., Campos, L. A. O., & Lopes, D. M. (2021b). The Bee chromosome database (Hymenoptera: Apidae). Apidologie, 52, 493–502. https://doi.org/10.1007/s13592-020-00838-2
  • Cunha, M. S., Soares, F. A. F., Clarindo, W. R., Campos, L. A. O., & Lopes, D. M. (2021c). Robertsonian rearrangements in Neotropical Meliponini karyotype evolution (Hymenoptera: Apidae: Meliponini). Insect Molecular Biology, 30(4), 379–389. https://doi.org/10.1111/imb.12702
  • Cunha, M. S., Travenzoli, N. M., Ferreira, R. D. P., Cassinela, E. K., Silva, H. B. D., Oliveira, F. P. M., Salomão, T. M. F., & Lopes, D. M. (2018). Comparative cytogenetics in three Melipona species (Hymenoptera: Apidae) with two divergent heterochromatic patterns. Genetics and Molecular Biology, 41(4), 806–813. https://doi.org/10.1590/1678-4685-gmb-2017-0330
  • Diniz, D., & Melo, P. X. (2006). Easy Idio
  • Domingues, A. M. T., Waldschmidt, A. M., Andrade, S. E., Andrade-Souza, V., Alves, R. M. D. O., Silva Junior, J. C. D., & Costa, M. A. (2005). Karyotype characterization of Trigona fulviventris Guérin, 1835 (Hymenoptera, Meliponini) by C banding and fluorochrome staining: Report of a new chromosome number in the genus. Genetics and Molecular Biology, 28, 390–393. https://doi.org/10.1590/S1415-47572005000300009
  • Eickbush, T. H., & Eickbush, D. G. (2007). Finely orchestrated movements: Evolution of the ribosomal RNA genes. Genetics, 175(2), 477–485. https://doi.org/10.1534/genetics.107.071399
  • Francini, I. B., Gross, M. C., Nunes-Silva, C. G., & Carvalho-Zilse, G. A. (2011). Cytogenetic analysis of the Amazon stingless bee Melipona seminigra merrillae reveals different chromosome number for the genus. Scientia Agricola, 68, 592–593. https://doi.org/10.1590/S0103-90162011000500012
  • Godoy, D. C., Ferreira, R. P., & Lopes, D. M. (2013). Chromosomal variation and cytogenetics of Plebeia lucii and P. phrynostoma (Hymenoptera: Apidae). Florida Entomologist, 96, 1559–1567. https://doi.org/10.1653/024.096.0439
  • Gonçalves, G. C., Dalbosco, A. M., Barth, A., Miranda, E. A., & Costa, M. A. (2020). Comparative cytogenetic analysis of three species of the genus Partamona (Apidae, Meliponini). Apidologie, 52, 80–88. https://doi.org/10.1007/s13592-020-00798-7
  • Gonzalez-Sanchez, M., Chiavarino, M., Jiménez, G., Manzanero, S., Rosato, M., & Puertas, A. M. (2004). The parasitic effects of rye B chromosomes might be beneficial in the long term. Cytogenetic and Genome Research, 106(2–4), 386–393. https://doi.org/10.1159/000079316
  • Guerra, M. (2004). Hibridização in situ: Princípios básicos. In: M. Guerra (Ed.). FISH: Conceitos e aplicações na citogenética. Sociedade Brasileira de Genética.
  • Heard, T. A. (1999). The role of stingless bees in crop pollination. Annual Review of Entomology, 44, 183–206. https://doi.org/10.1146/annurev.ento.44.1.183
  • Hirai, H. (2020). Chromosome dynamics regulating genomic dispersion and alteration of nucleolus organizer regions (NORs). Cells, 9, 971. https://doi.org/10.3390/cells9040971
  • Hoffmann, A. A., & Rieseberg, L. H. (2008). Revisiting the impact of inversions in evolution: From population genetic markers to drivers of adaptive shifts and speciation? Annual Review of Ecology, Evolution, and Systematics, 39, 21–42. https://doi.org/10.1146/annurev.ecolsys.39.110707.173532
  • Hoshiba, H., & Imai, H. (1993). Chromosome evolution of bees and wasps (Hymenoptera, Apocrita) on the basis of C-banding pattern analyses. Japanese Journal of Entomology, 61, 465–492.
  • Huang, Y. C., Lee, C. C., Kao, C. Y., Chang, N. C., Lin, C. C., Shoemaker, D., & Wang, J. (2016). Evolution of long centromeres in fire ants. BMC Evolutionary Biology, 16, 189. https://doi.org/10.1186/s12862-016-0760-7
  • Imai, H. T., Maruyama, T., Gojobori, T., Inoue, Y., & Crozier, R. H. (1986). Theoretical bases for karyotype evolution. 1. The minimum-interaction hypothesis. The American Naturalist, 128, 900–920. https://www.jstor.org/stable/2461770
  • Imai, H. T., Satta, Y., & Takahata, N. (2001). Integrative study on chromosome evolution of mammals, ants and wasps based on the minimum interaction theory. Journal of Theoretical Biology, 210, 475–497. https://doi.org/10.1006/jtbi.2001.2327
  • Imai, H. T., Taylor, R. W., Crosland, M. W., & Crozier, R. H. (1988). Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. The Japanese Journal of Genetics, 63, 159–185. https://doi.org/10.1266/jjg.63.159
  • Janssen, A., Colmenares, S. U., & Karpen, G. H. (2018). Heterochromatin: Guardian of the genome. Annual Review of Cell and Developmental Biology, 34, 265–288. https://doi.org/10.1146/annurev-cellbio-100617-062653
  • Kirkpatrick, M., & Barton, N. (2006). Chromosome inversions, local adaptation and speciation. Genetics, 173(1), 419–434. https://doi.org/10.1534/genetics.105.047985
  • Levan, A., Fredga, K., & Sandberg, A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas, 52, 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
  • Lopes, D. M., Pompolo, S. G., Campos, L. A. O., & Tavares, M. G. (2008). Cytogenetic characterization of Melipona rufiventris Lepeletier 1836 and Melipona mondury Smith 1863 (Hymenoptera, Apidae) by C banding and fluorochromes staining. Genetics and Molecular Biology, 31, 49–52. https://doi.org/10.1590/S1415-47572008000100010
  • Lopes, D. M., Travenzoli, N. M., Fernandes, A., & Campos, L. A. O. (2020). Different levels of chromatin condensation in Partamona chapadicola and Partamona nhambiquara (Hymenoptera, Apidae). Cytogenetic and Genome Research, 160, 206–213. https://doi.org/10.1159/000507835
  • Martins, C. C. C., Waldschmidt, A. M., & Costa, M. A. (2014). Unprecedented record of ten novel B chromosomes in the stingless bee Partamona helleri (Apidae, Meliponini). Apidologie, 45, 431–439. https://doi.org/10.1007/s13592-013-0257-y
  • Menezes, R. S., Cabral‐de‐Mello, D. C., Milani, D., Bardella, V. B., & Almeida, E. A. (2021). The relevance of chromosome fissions for major ribosomal DNA dispersion in hymenopteran insects. Journal of Evolutionary Biology, 34, 1466–1476. https://doi.org/10.1111/jeb.13909
  • Menezes, R. S., Gazoni, T., & Costa, M. A. (2019). Cytogenetics of warrior wasps (Vespidae: Synoeca) reveals intense evolutionary dynamics of ribosomal DNA clusters and an unprecedented number of microchromosomes in Hymenoptera. Biological Journal of the Linnean Society, 126, 925–935. https://doi.org/10.1093/biolinnean/bly210
  • Michener, C. D. (2007). The bees of the world (2nd ed.). The John Hopkins University Press.
  • Micolino, R., Cristiano, M. P., Travenzoli, N. M., Lopes, D. M., & Cardoso, D. C. (2019). Chromosomal dynamics in space and time: Evolutionary history of Mycetophylax ants across past climatic changes in the Brazilian Atlantic coast. Scientific Reports, 9, 18800. https://doi.org/10.1038/s41598-019-55135-5
  • Milani, D., & Cabral-de-Mello, D. C. (2014). Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) revealed by FISH mapping: Remarkable spreading in the A and B chromosomes. PLoS One, 9, e97956. https://doi.org/10.1371/journal.pone.0097956
  • Milani, D., Palacios-Gimenez, O. M., & Cabral-de-Mello, D. C. (2017). The U2 snDNA is a useful marker for B chromosome detection and frequency estimation in the grasshopper Abracris flavolineata. Cytogenetic and Genome Research, 151, 36–40. https://doi.org/10.1159/000458468
  • Montiel, E. E., Cabrero, J., Ruiz-Estévez, M., Burke, W. D., Eickbush, T. H., Camacho, J. P. M., & López-León, M. D. (2014). Preferential occupancy of R2 retroelements on the B chromosomes of the grasshopper Eyprepocnemis plorans. PloS One, 9, e91820. https://doi.org/10.1371/journal.pone.0091820
  • Palacios-Gimenez, O. M., Carvalho, C. R., Soares, F. A. F., & Cabral-de-Mello, D. C. (2015a). Contrasting the chromosomal organization of repetitive DNAs in two Gryllidae crickets with highly divergent karyotypes. PloS One, 10, e0143540. https://doi.org/10.1371/journal.pone.0143540
  • Palacios-Gimenez, O. M., Castillo, E. R., Martí, D. A., & Cabral-de-Mello, D. C. (2013). Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences. BMC Evolutionary Biology, 13, 167. https://doi.org/10.1186/1471-2148-13-167
  • Palacios-Gimenez, O. M., Marti, D. A., & Cabral-de-Mello, D. C. (2015b). Neo-sex chromosomes of Ronderosia bergi: Insight into the evolution of sex chromosomes in grasshoppers. Chromosoma, 124, 353–365. https://doi.org/10.1007/s00412-015-0505-1
  • Pereira, J. A., Salomão, T. M. F., & Lopes, D. M. (2020). Different repetitive DNA sequences make up heterochromatin in Meliponini. Apidologie, 51, 855–860. https://doi.org/10.1007/s13592-020-00766-1
  • Pereira, J. A., Travenzoli, N. M., Oliveira, M. P., Werneck, H. A., Salomão, T. M. F., & Lopes, D. M. (2021). Molecular cytogenetics in the study of repetitive sequences helping to understand the evolution of heterochromatin in Melipona (Hymenoptera, Meliponini). Genetica, 149(1), 55–62. https://doi.org/10.1007/s10709-020-00111-5
  • Piccoli, M. C. A., Bardella, V. B., & Cabral-de-Mello, D. C. (2018). Repetitive DNAs in Melipona scutellaris (Hymenoptera: Apidae: Meliponidae): Chromosomal distribution and test of multiple heterochromatin amplification in the genus. Apidologie, 49, 497–504. https://doi.org/10.1007/s13592-018-0577-z
  • Pinkel, D., Straume, T., & Gray, J. W. (1986). Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proceedings of the National Academy of Sciences of the United States of America, 83(9), 2934–2938. https://doi.org/10.1073/pnas.83.9.2934
  • Piscor, D., Paiz, L. M., Baumgärtner, L., Cerqueira, F. J., Fernandes, C. A., Lui, R. L., Parise‑Maltempi, P. P., & Margarido, V. P. (2020). Chromosomal mapping of repetitive sequences in Hyphessobrycon eques (Characiformes, Characidae): A special case of the spreading of 5S rDNA clusters in a genome. Genetica, 148, 25–32. https://doi.org/10.1007/s10709-020-00086-3
  • Pompolo, S. G., & Campos, L. A. O. (1995). Karyotypes of two species of stingless bees, Leurotrigona muelleri and Leurotrigona pusilla (Hymenoptera, Meliponinae). Revista Brasileira de Genetica, 18, 181–184.
  • Rasmussen, C., & Cameron, S. A. (2010). Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biological Journal of the Linnean Society, 99, 206–232. https://doi.org/10.1111/j.1095-8312.2009.01341.x
  • Rocha, M. P., Pompolo, S. G., & Campos, L. A. O. (2003). Citogenética da tribo Meliponini (Hymenoptera, Apidae). In: G. A. R. Melo & I. Alves-dos-Santos (Eds.), Apoidea Neotropica: Homenagem aos 90 Anos de Jesus Santiago Moure (pp. 311–320). Editora UNESC.
  • Rocha, M. P., Pompolo, S. G., Dergam, J. A., Fernandes, A., & Campos, L. A. O. (2002). DNA characterization and karyotypic evolution in the bee genus Melipona (Hymenoptera, Meliponini). Hereditas, 136, 19–27. https://doi.org/10.1034/j.1601-5223.2002.1360104.x
  • Ruiz-Estevez, M., Lopez-Leon, M. D., Cabrero, J., & Camacho, J. P. M. (2012). B-chromosome ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS One, 7, e36600. https://doi.org/10.1371/journal.pone.0036600
  • Ruiz-Ruano, F. J., Cabrero, J., López-León, M. D., & Camacho, J. P. M. (2017). Satellite DNA content illuminates the ancestry of a supernumerary (B) chromosome. Chromosoma, 126, 487–500. https://doi.org/10.1007/s00412-016-0611-8
  • Ruiz-Ruano, F. J., Cuadrado, Á., Montiel, E. E., Camacho, J. P. M., & López-León, M. D. (2015). Next generation sequencing and FISH reveal uneven and nonrandom microsatellite distribution in two grasshopper genomes. Chromosoma, 124, 221–234. https://doi.org/10.1007/s00412-014-0492-7
  • Ruiz-Ruano, F. J., Navarro-Domínguez, B., López-León, M. D., Cabrero, J., & Camacho, J. P. M. (2019). Evolutionary success of a parasitic B chromosome rests on gene content. bioRxiv 683417. https://doi.org/10.1101/683417
  • Santos, J. M. D., Diniz, D., Rodrigues, T. A. S., Cioffi, M. D. B., & Waldschmidt, A. M. (2018). Heterochromatin distribution and chromosomal mapping of microsatellite repeats in the genome of Frieseomelitta stingless bees (Hymenoptera: Apidae: Meliponini). Florida Entomologist, 101, 33–39. https://doi.org/10.1653/024.101.0107
  • Schubert, I., & Lysak, M. A. (2011). Interpretation of karyotype evolution should consider chromosome structural constraints. Trend in Genetics, 27, 207–216. https://doi.org/10.1016/j.tig.2011.03.004
  • Schubert, I., Schriever-Schwemmer, G., Werner, T., & Adler, I. D. (1992). Telomeric signals in Robertsonian fusion and fission chromosomes: Implications for the origin of pseudoaneuploidy. Cytogenetic and Genome Research, 59, 6–9. https://doi.org/10.1159/000133186
  • Shapiro, J. A., & Von Sternberg, R. (2005). Why repetitive DNA is essential to genome function. Biological Reviews of the Cambridge Philosophical Society, 80(2), 227–250. https://doi.org/10.1017/s1464793104006657
  • Silva, D. M., Pansonato-Alves, J. C., Utsunomia, R., Daniel, S. N., Hashimoto, D. T., Oliveira, C., Porto-Foresti, F., & Foresti, F. (2013). Chromosomal organization of repetitive DNA sequences in Astyanax bockmanni (Teleostei, Characiformes): Dispersive location, association and co-localization in the genome. Genetica, 141(7–9), 329–336. https://doi.org/10.1007/s10709-013-9732-7
  • Silva, A. A., Rocha, M. P., Pompolo, S. G., Campos, L. A. O., & Tavares, M. G. (2018). Karyotypic description of the stingless bee Melipona quinquefasciata Lepeletier, 1836 (Hymenoptera, Meliponini) with emphasis on the presence of B chromosomes. Comparative Cytogenetics, 12, 471. https://doi.org/10.3897/CompCytogen.v12i4.29165
  • Slijepcevic, P. (1998). Telomeres and mechanisms of Robertsonian fusion. Chromosoma, 107, 136–140. https://doi.org/10.1007/s004120050289
  • Sochorová, J., Garcia, S., Gálvez, F., Symonová, R., & Kovařík, A. (2018). Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma, 127, 141–150. https://doi.org/10.1007/s00412-017-0651-8
  • Tavares, M. G., Lopes, D. M., & Campos, L. A. O. (2017). An overview of cytogenetics of the tribe Meliponini (Hymenoptera: Apidae). Genetica, 145, 241–258. https://doi.org/10.1007/s10709-017-9961-2
  • Teixeira, G. A., Aguiar, H. J. A. C., Petitclerc, F., Orivel, J., Lopes, D. M., & Barros, L. A. C. (2021). Evolutionary insights into the genomic organization of major ribosomal DNA in ant chromosomes. Insect Molecular Biology, 30, 340–354. https://doi.org/10.1111/imb.12699
  • Teixeira, G. A., Barros, L. A. C., Lopes, D. M., & Aguiar, H. J. A. C. (2020). Cytogenetic variability in four species of Gnamptogenys Roger, 1863 (Formicidae: Ectatomminae) showing chromosomal polymorphisms, species complex, and cryptic species. Protoplasma, 257, 549–560. https://doi.org/10.1007/s00709-019-01451-6
  • Trask, B. J. (1991). Fluorescence in situ hybridization: Applications in cytogenetics and gene mapping. Trend in Genetics, 7, 149–154. https://doi.org/10.1016/0168-9525(91)90378-4
  • Travenzoli, N. M., Cardoso, D. C., Werneck, H. A., Fernandes-Salomão, T. M., Tavares, M. G., & Lopes, D. M. (2019b). The evolution of haploid chromosome numbers in Meliponini. PloS One, 14, e0224463. https://doi.org/10.1371/journal.pone.0224463
  • Travenzoli, N. M., Lima, B. A., Cardoso, D. C., Dergam, J. A., Salomão, T. M. F., & Lopes, D. M. (2019a). Cytogenetic analysis and chromosomal mapping of repetitive DNA in Melipona species (Hymenoptera, Meliponini). Cytogenetic and Genome Research, 158, 213–224. https://doi.org/10.1159/000501754
  • Valente, G. T., Nakajima, R. T., Fantinatti, B. E., Marques, D. F., Almeida, R. O., Simões, R. P., & Martins, C. (2017). B chromosomes: From cytogenetics to systems biology. Chromosoma, 126, 73–81. https://doi.org/10.1007/s00412-016-0613-6
  • Warchałowska-Śliwa, E., Grzywacz, B., Heller, K. G., & Chobanov, D. P. (2017). Comparative analysis of chromosomes in the Palaearctic bush-crickets of tribe Pholidopterini (Orthoptera, Tettigoniinae). Comparative Cytogenetics, 11, 309–324. https://doi.org/10.3897/CompCytogen.v11i2.12070
  • Warchałowska-Śliwa, E., Grzywacz, B., Maryansks-Nadachowska, A., Karamysheva, T. V., Chobanov, D. P., & Heller, K. G. (2013). Cytogenetic variability among Bradyporinae species (Orthoptera: Tettigoniidae). European Journal of Entomology, 110, 1–12. https://doi.org/10.14411/eje.2013.001
  • Zattera, M. L., Gazolla, C. B., Soares, A. D. A., Gazoni, T., Pollet, N., Recco-Pimentel, S. M., & Bruschi, D. P. (2020). Evolutionary dynamics of the repetitive DNA in the karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae). Frontiers in Genetics, 11, 637. https://doi.org/10.3389/fgene.2020.00637
  • Zattera, M. L., Lima, L., Duarte, I., Sousa, D. Y., Santos-Araújo, O. G., Gazoni, T., Mott, T., Recco-Pimentel, S. M., & Bruschi, D. P. (2019). Chromosome spreading of the (TTAGGG) n repeats in the Pipa carvalhoi Miranda-Ribeiro, 1937 (Pipidae, Anura) karyotype. Comparative Cytogenetics, 13, 297–309. https://doi.org/10.3897/CompCytogen.v13i3.35524

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.