221
Views
1
CrossRef citations to date
0
Altmetric
Sociobiology and behaviour

Effects of octopamine on memory retention under chemical stress: a behavioral study on honey bees

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 76-87 | Received 19 Feb 2022, Accepted 27 Jul 2022, Published online: 08 Mar 2023

References

  • Ahmed, M. A. I., & Vogel, C. F. A. (2020). The synergistic effect of octopamine receptor agonists on selected insect growth regulators on Culex quinquefasciatus Say (Diptera: Culicidae) mosquitoes. One Health, 10(100138), 1–7. https://doi.org/10.1016/j.onehlt.2020.100138
  • Akülkü, I., Ghanem, S., Suwannapong, G., & Mayack, C. (2021). Age-dependent honey bee appetite regulation is mediated by trehalose and octopamine baseline levels. Insects, 12, 1–12. https://doi.org/10.3390/insects12100863
  • Alburaki, M., Steckel, S. J., Chen, D., Mcdermott, E., Weiss, M., Skinner, J. A., Kelly, H., et al. (2017). Landscape and pesticide effects on honey bees: Forager survival and expression of acetylcholinesterase and brain oxidative genes. Apidologie, 48(4), 556–571. https://doi.org/10.1007/s13592-017-0497-3
  • Aliouane, Y., El Hassani, A. K., Gary, V., Armengaud, C., Lambin, M., & Gauthier, M. (2009). Subchronic exposure of honey bees to sublethal doses of pesticides: Effects on behavior. Environmental Toxicology and Chemistry, 28(1), 113–122. https://doi.org/10.1897/08-110.1
  • Balfanz, S., Jordan, N., Langenstück, T., Breuer, J., Bergmeier, V., & Baumann, A. (2014). Molecular, pharmacological, and signaling properties of octopamine receptors from honey bee (Apis mellifera) brain. Journal of Neurochemistry, 129(2), 284–296. https://doi.org/10.1111/jnc.12619
  • Barascou, L., Brunet, J. L., Belzunces, L., Decourtye, A., Henry, M., Fourrier, J., Le Conte, Y., & Alaux, C. (2021). Pesticide risk assessment in honey bees: Toward the use of behavioral and reproductive performances as assessment endpoints. Chemosphere, 276(130134), 1–14. https://doi.org/10.1016/j.chemosphere.2021.130134
  • Barron, A. B., & Robinson, G. E. (2005). Selective modulation of task performance by octopamine in honey bee (Apis mellifera) division of labour. Journal of Comparative Physiology A, 191, 659–668. https://doi.org/10.1007/s00359-005-0619-7
  • Barron, A. B., Maleszka, R., Vander Meer, R. K., & Robinson, G. E. (2007). Octopamine modulates honey bee dance behavior. Proceedings of the National Academy of Sciences of the United States of America, 104(5), 1703–1707. https://doi.org/10.1073/pnas.0610506104
  • Behrends, A., & Scheiner, R. (2012). Octopamine improves learning in newly emerged bees but not in old foragers. The Journal of Experimental Biology, 215(Pt 7), 1076–1083. https://doi.org/10.1242/jeb.063297
  • Belzunces, L. P., Tchamitchian, S., & Brunet, J. L. (2012). Neural effects of insecticides in the honey bee. Apidologie, 43, 348–370. https://doi.org/10.1007/s13592-012-0134-0
  • Blenau, W., Wilms, J. A., Balfanz, S., & Baumann, A. (2020). AmOctα2R: Functional characterization of a honey bee octopamine receptor inhibiting adenylyl cyclase activity. International Journal of Molecular Sciences, 21(24)9334, 1–19. https://doi.org/10.3390/ijms21249334
  • Bloch, G., & Meshi, A. (2007). Influences of octopamine and juvenile hormone on locomotor behavior and period gene expression in the honey bee, Apis mellifera. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 193(2), 181–199. https://doi.org/10.1007/s00359-006-0179-5
  • Bonmatin, J., Moineau, I., Charvet, R., Fleche, C., Colin, M., & Bengsch, E. (2003). A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Analytical Chemistry, 75(9), 2027–2033. https://doi.org/10.1021/ac020600b
  • Bonnafé, E., Drouard, F., Hotier, L., Carayon, J. L., Marty, P., Treilhou, M., & Armengaud, C. (2015). Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honey bee Apis mellifera. Environmental Science and Pollution Research, 22(11), 8022–8030. https://doi.org/10.1007/s11356-014-2616-2
  • Brocato, J., & Costa, M. (2013). Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Critical Reviews in Toxicology, 43(6), 493–514. https://doi.org/10.3109/10408444.2013.794769
  • Buckemüller, C., Siehler, O., Göbel, J., Zeumer, R., Ölschläger, A., & Eisenhardt, D. (2017). Octopamine underlies the counter-regulatory response to a glucose deficit in honey bees (Apis mellifera). Frontiers in Systems Neuroscience, 11(63), 1–13. https://doi.org/10.3389/fnsys.2017.00063
  • Burden, C. M., Morgan, M. O., Hladun, K. R., Amdam, G. V., Trumble, J. J., & Smith, B. H. (2019). Acute sublethal exposure to toxic heavy metals alters honey bee (Apis mellifera) feeding behavior. Scientific Reports, 9(4253), 1–10. https://doi.org/10.1038/s41598-019-40396-x
  • Cabe, S. I. M., Ferro, M. W. B., Farina, W. M., & Hrncir, M. (2017). Dose- and time-dependent effects of oral octopamine treatments on the sucrose responsiveness in stingless bees (Melipona scutellaris). Apidologie, 48, 1–7. https://doi.org/10.1007/s13592-016-0442-x
  • Chia, J., & Scott, K. (2020). Activation of specific mushroom body output neurons inhibits proboscis extension and sucrose consumption. PLoS One. 15(1), e0223034. 1-16. https://doi.org/10.1371/journal.pone.0223034
  • Colin, T., Forster, C. C., Westacott, J., Wu, X., Meikle, W. G., & Barron, A. B. (2021). Effects of late miticide treatments on foraging and colony productivity of European honey bees (Apis mellifera). Apidologie, 52(2), 474–492. https://doi.org/10.1007/s13592-020-00837-3
  • Colin, T., Plath, J. A., Klein, S., Vine, P., Devaud, J. M., Lihoreau, M., Meikle, W. G., & Barron, A. B. (2020). The miticide thymol in combination with trace levels of the neonicotinoid imidacloprid reduces visual learning performance in honey bees (Apis mellifera). Apidologie, 51, 499–509. https://doi.org/10.1007/s13592-020-00737-6
  • Corby-Harris, V., Deeter, M. E., Snyder, L., Meador, C., Welchert, A. C., Hoffman, A., & Obernesser, B. T. (2020). Octopamine mobilizes lipids from honey bee (Apis mellifera) hypopharyngeal glands. Journal of Experimental Biology, 223jeb216135, 1–9. https://doi.org/10.1242/jeb.216135
  • Cresswell, J. E., Desneux, N., & van Engelsdorp, D. (2012). Dietary traces of neonicotinoid pesticides as a cause of population declines in honey bees: an evaluation by Hill’s epidemiological criteria. Pest Management Science, 68(6), 819–827. https://doi.org/10.1002/ps.3290
  • de Mattos, I. M., Soares, A. E. E., & Tarpy, D. R. (2018). Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. Ecotoxicology, 27, 32–44. https://doi.org/10.1007/s10646-017-1868-2
  • Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S., Gauthier, M., & Pham-Delègue, M. H. (2004). Imidacloprid impairs memory and brain metabolism in the honey bee (Apis mellifera L.). Pesticide Biochemistry and Physiology, 78(2), 83–92. https://doi.org/10.1016/j.pestbp.2003.10.001
  • Démares, F. J., Crous, K. L., Pirk, C. W., Nicolson, S. W., & Human, H. (2016). Sucrose sensitivity of honey bees is differently affected by dietary protein and a neonicotinoid pesticide. PLoS One. 11(6)e0156584, 1–16. https://doi.org/10.1371/journal.pone.0223034
  • Denker, M., Finke, R., Schaupp, F., Grün, S., & Menzel, R. (2010). Neural correlates of odor learning in the honey bee antennal lobe. European Journal of Neuroscience, 31(1), 119–133. https://doi.org/10.1111/j.1460-9568.2009.07046.x
  • Erber, J., & Kloppenburg, P. (1995). The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L.) Journal of Comparative Physiology A, 176, 111–118. https://doi.org/10.1007/BF00197757
  • Farooqui, T. (2013). A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: A unique hypothesis. Neurochemistry International, 62(1), 122–136. https://doi.org/10.1016/j.neuint.2012.09.020
  • Farooqui, T., Robinson, K., Vaessin, H., & Smith, B. H. (2003). Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honey bee. The Journal of Neuroscience, 23(12), 5370–5380. https://doi.org/10.1523/JNEUROSCI.23-12-05370.2003
  • Felsenberg, J., Gehring, K. B., Antemann, V., & Eisenhardt, D. (2011). Behavioural pharmacology in classical conditioning of the proboscis extension response in honey bees (Apis mellifera). Journal of Visualized Experiments, 47(2282), 1–5. https://doi.org/10.3791/2282
  • Fussnecker, B. L., Smith, B. H., & Mustard, J. A. (2006). Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). Journal of Insect Physiology, 52(10), 1083–1092. https://doi.org/10.1016/j.jinsphys.2006.07.008
  • Gashout, H. A., Guzman-Novoab, E., Goodwinb, P. H., & Correa-Benítezc, A. (2020). Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory. Journal of Insect Physiology, 121(104014), 1–8. https://doi.org/10.1016/j.jinsphys.2020.104014
  • Giray, T., Galindo-Cardona, A., & Oskay, D. (2007). Octopamine influences honey bee foraging preference. Journal of Insect Physiology, 53(7), 691–698. https://doi.org/10.1016/j.jinsphys.2007.03.016
  • Giurfa, M., & Sandoz, J. C. (2012). Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honey bees. Learning & Memory, 19(2), 54–66. https://doi.org/10.1101/lm.024711.111
  • Glavan, G. (2020). Histochemical staining of acetylcholinesterase in carnolian honey bee (Apis mellifera carnica) brain after chronic exposure to organophosphate diazinon. Journal of Apicaltural Science, 64(1), 123–130. https://doi.org/10.2478/jas-2020-0003
  • Gonalons, C. M., & Farina, W. M. (2018). Impaired associative learning after chronic exposure to pesticides in young adult honey bees. Journal of Experimental Biology, 221(7), 1–11. https://doi.org/10.1242/jeb.176644
  • Gregorc, A., Alburaki, M., Rinderer, N., Sampson, B., Knight, P. R., Karim, S., & Adamczyk, J. (2018). Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Scientific Reports, 8(15003), 1–13. https://doi.org/10.1038/s41598-018-33348-4
  • Grohmann, L., Blenau, W., Erber, J., Ebert, P. R., Strünker, T., & Baumann, A. (2003). Molecular and functional characterization of an octopamine receptor from honey bee (Apis mellifera) brain. Journal of Neurochemistry, 86(3), 725–735. https://doi.org/10.1046/j.1471-4159.2003.01876.x
  • Guo, L., Fan, X-y., Qiao, X., Montell, C., Huang, J. (2021). An octopamine receptor confers selective toxicity of amitraz on honey bees and Varroa mites An octopamine receptor confers selective toxicity of amitraz on honey bees and Varroa mites. eLife,10:e68268. https://doi.org/10.7554/eLife.68268
  • Hammer, M., & Menzel, R. (1998). Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honey bees. Learning & Memory, 5(1), 146–156.
  • He, B., Liu, Z., Wang, Y., Cheng, L., Qing, Q., Duan, J., Xu, J., Dang, X., Zhou, Z., & Li, Z. (2021). Imidacloprid activates ROS and causes mortality in honey bees (Apis mellifera) by inducing iron overload. Ecotoxicology and Environmental Safety, 228(112709) https://doi.org/10.1016/j.ecoenv.2021.112709
  • Hernández, J., Riveros, A. J., & Amaya-Márquez, M. (2021). Sublethal doses of glyphosate impair olfactory memory retention, but not learning in the honey bee (Apis mellifera scutellata). Journal of Insect Conservation, 25(4), 683–694. https://doi.org/10.1007/s10841-021-00335-6
  • Himmelreich, S., & Grünewald, B. (2012). Cellular physiology of olfactory learning in the honey bee brain. Apidologie, 43(3), 308–321. https://doi.org/10.1007/s13592-012-0135-z
  • Hoshikawa, H., Uno, M., Honjoh, S., & Nishida, E. (2017). Octopamine enhances oxidative stress resistance through the fasting-responsive transcription factor DAF-16/FOXO in C. elegans. Genes to Cells, 22, 210–219.
  • Iqbal, J., Alqarni, A., & Raweh, H. (2018). Effect of sub-lethal doses of imidacloprid on learning and memory formation of indigenous Arabian bee (Apis mellifera jemenitica Ruttner) adult foragers. Neotropical Entomology, 48, 1–8. https://doi.org/10.1007/s13744-018-0651-2
  • Klein, S., Cabirol, A., Devaud, J. M., Barron, A. B., & Lihoreau, M. (2017). Why bees are so vulnerable to environmental stressors. Trends in Ecology & Evolution, 32(4), 268–278. https://doi.org/10.1146/annurev-ento-011613-162005
  • Lemmon, J. (2010). The effects of β-Sitosterol-β-D-Glucoside (BSSG) and paraquat on sucrose sesensitivityolfactory conditioning and motor development in honey bees, Apis mellifera. A thesis for the degree of Master of Science in Zoology University of Otago.
  • Li, Z. G., Li, M., Huang, J. N., Ma, C. S., Xiao, L. C., Huang, Q., Zhao, Y. Z., Nie, H. Y., & Su, S. K. (2017). Effects of sublethal concentrations of chlorpyrifos on olfactory learning and memory performances in two bee species, Apis mellifera and Apis cerana. Sociobiology, 64(2), 174–181. https://doi.org/10.13102/sociobiology.v64i2.1385
  • Lin, M., Colon-Perez, L. M., Sambo, D. O., Miller, D. R., Lebowitz, J. J., Jimenez-Rondan, F., Cousins, R. J., Horenstein, N., Aydemir, T. B., Febo, M., & Khoshbouei, H. (2020). Mechanism of manganese dysregulation of dopamine neuronal activity. Journal of Neuroscience, 40(30), 5871–5891. https://doi.org/10.1523/JNEUROSCI.2830-19.2020
  • Linn, M., Glaser, S. M., Peng, T., & Grüter, C. (2020). Octopamine and dopamine mediate waggle dance following and information use in honey bees. Proceedings of the Royal Society B, 287(1936)20201950, 1–7. https://doi.org/10.1098/rspb.2020.1950
  • Luo, Q. H., Gao, J., Guo, Y., Liu, C., Ma, Y. Z., Zhou, Z. Y., Dai, P. L., Hou, C. S., Wu, Y. Y., & Diao, Q. Y. (2021). Effects of a commercially formulated glyphosate solutions at recommended concentrations on honey bee (Apis mellifera L.) behaviours. Scientific Reports, 11(2115), 1–8. https://doi.org/10.1038/s41598-020-80445-4
  • Matsumoto, Y., Matsumoto, C. S., Wakuda, R., Ichihara, S., & Mizunami, M. (2015). Roles of octopamine and dopamine in appetitive and aversive memory acquisition studied in olfactory conditioning of maxillary palpi extension response in crickets. Frontiers in Behavioral Neuroscience, 9(230), 1–9. https://doi.org/10.3389/fnbeh.2015.00230
  • Menzel, R. (2012). The honey bee as a model for understanding the basis of cognition. Nature Reviews Neuroscience, 13, 758–768. https://doi.org/10.1038/nrn3357
  • Menzel, R., & Muller, U. (1996). Learning and memory in honey bees: From behavior to neural substrates. Annual Review of Neuroscience, 19, 379–404. https://doi.org/10.1146/annurev.ne.19.030196.002115
  • Menzel, R., Manz, G., Menzel, R., & Greggers, U. (2001). Massed and spaced learning in honey bees: the role of CS, US, the intertrial interval, and the test interval. Learning & Memory, 8(4), 198–208. https://doi.org/10.1101/lm.40001
  • Mercer, A. R., & Menzel, R. (1982). The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honey bee, Apis mellifera. Journal of Comparative Physiology A, 145, 363–368. https://doi.org/10.1007/BF00619340
  • Monchanin, C., Drujont, E., Devaud, J. M., Lihoreau, M., & Barron, A. B. (2021). Heavy metal pollutants have additive negative effects on honey bee cognition. Journal of Experimental Biology, 224(12), 1–7. https://doi.org/10.1242/jeb.241869
  • Mustard, J. A., Gott, A., Scott, J., Chavarria, N. L., & Wright, G. A. (2020). Honey bees fail to discriminate floral scents in a complex learning task after consuming a neonicotinoid pesticide. Journal of Experimental Biology, 223(5), 1–8. https://doi.org/10.1242/jeb.217174
  • Ohta, H., & Ozoe, Y. (2014). Molecular signalling, pharmacology, and physiology of octopamine and tyramine receptors as potential insect pest control targets. Advances in Insect Physiology, 46, 73–166. https://doi.org/10.1016/B978-0-12-417010-0.00002-1
  • Pankau, C., & Cooper, R. L. (2022). Molecular physiology of manganese in insects. Current Opinion in Insect Science, 51, 1–7. https://doi.org/10.1016/j.cois.2022.100886
  • Pankiw, T., Waddington, K. D., & Page, R. E. (2001). Modulation of sucrose response thresholds in honey bees (Apis mellifera): influence of genotype, feeding and foraging experience. Journal of Comparative Physiology A, 87, 293–301. https://doi.org/10.1007/s003590100201
  • Peng, T., Schroeder, M., & Grüter, C. (2020). Octopamine increases individual and collective foraging in a neotropical stingless bee. Biology Letters, 16(20200238), 1–5. https://doi.org/10.1098/rsbl.2020.0238
  • Pham-Delègue, M. H., Jong, R. D., & Masson, C. (1990). Age dependency of the conditioned proboscis extension response in honey bees. Comptes Rendus Des Séances de L'Académie Des Sciences, 310, 527–532.
  • Rand, E., Smit, S., Beukes, M., Apostolides, Z., Pirk, C. W., & Nicolson, S. W. (2015). Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Reports, 5(11779), 1–11. https://doi.org/10.1038/srep11779
  • Raza, M. F., Wang, T., Li, Z., Nie, H., Giurfa, M., Husain, A., Hlavácˇ, P., Kodrik, M., Ali, M. A., Rady, A., & Su, S. (2022). Biogenic amines mediate learning success in appetitive odor conditioning in honey bees. Journal of King Saud University – Science, 34(101928), 1–7. https://doi.org/10.1016/j.jksus.2022.101928
  • Reim, T., & Scheiner, R. (2014). Division of labour in honey bees: Age- and task-related changes in the expression of octopamine receptor genes. Insect Molecular Biology, 23(6), 833–841. https://doi.org/10.1111/imb.12130
  • Rein, J., Mustard, J., Strauch, M., Smith, B. H., & Galizia, C. G. (2013). Octopamine modulates activity of neural networks in the honey bee antennal lobe. Journal of Comparative Physiology A, 199(11), 947–962. https://doi.org/10.1007/s00359-013-0805-y
  • Scheiner, R., Abramson, C. I., Brodschneider, R., Crailsheim, K., Farina, W. M., Fuchs, S., Gruenewald, B., Hahshold, S., Karrer, M., & Koeniger, G. (2013). Standard methods for behavioural studies of Apis mellifera. Journal of Apicaltural Research, 52(4), 1–58. https://doi.org/10.3896/IBRA.1.52.4.04
  • Scheiner, R., Baumann, A., & Blenau, W. (2006). Aminergic control and modulation of honey bee behaviour. Current Neuropharmacology, 4(4), 259–276. https://doi.org/10.2174/157015906778520791
  • Scheiner, R., Pluckhahn, S., Oney, B., Blenau, W., & Erber, J. (2002). Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. Behavioural Brain Research, 136(2), 545–553. https://doi.org/10.1016/S0166-4328(02)00205-X
  • Scheiner, R., Reim, T., Søvik, E., Entler, B. V., Barron, A. B., & Thamm, M. (2017). Learning, gustatory responsiveness and tyramine differences across nurse and forager honey bees. Journal of Experimental Biology, 220(8), 1443–1450. https://doi.org/10.1242/jeb.152496
  • Scheiner, R., Steinbach, A., Classen, G., Strudthoff, N., & Scholz, H. (2014a). Octopamine indirectly affects proboscis extension response habituation in Drosophila melanogaster by controlling sucrose responsiveness. Journal of Insect Physiology, 69, 107–117. https://doi.org/10.1016/j.jinsphys.2014.03.011
  • Scheiner, R., Toteva, A., Reim, T., Søvik, E., & Barron, A. B. (2014b). Differences in the phototaxis of pollen and nectar foraging honey bees are related to their octopamine brain titers. Frontiers in Physiology (Invertebrate Physiology), 116, 1–8. https://doi.org/10.3389/fphys.2014.00116
  • Schilcher, F., Thamm, M., Strube-Bloss, M., & Scheiner, R. (2021). Opposing actions of octopamine and tyramine on honey bee vision. Biomolecules, 11(9), 1374. https://doi.org/10.3390/biom11091374
  • Schulz, D. J., & Robinson, G. E. (1999). Biogenic amines and division of labor in honey bee colonies: Behaviorally related changes in the antennal lobes and age-related changes in the mushroom bodies. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 184(5), 481–488. https://doi.org/10.1007/s003590050348
  • Schulz, D. J., & Robinson, G. E. (2001). Octopamine influences division of labor in honey bee colonies. Journal of Comparative Physiology A, 187, 53–61. https://doi.org/10.1007/s003590000177
  • Selcho, M., & Pauls, D. (2019). Linking physiological processes and feeding behaviors by octopamine. Current Opinion in Insect Science, 36, 125–130. https://doi.org/10.1016/j.cois.2019.09.002
  • Senut, M. C., Sen, A., Cingolani, P., Shaik, A., Land, S. J., & Ruden, D. M. (2014). Lead exposure disrupts global DNA methylation in human embryonic stem cells and alters their neuronal differentiation. Toxicological Sciences, 139, 142–161. https://doi.org/10.1093/toxsci/kfu028
  • Siviter, H., Koricheva, J., Brown, M. J. F., & Leadbeater, E. (2018). Quantifying the impact of pesticides on learning and memory in bees. Journal of Applied Ecology, 55(6), 2812–2821. https://doi.org/10.1111/1365-2664.13193
  • Škerl, M. I. S., Bolta, V., Česnik, H. B., & Gregorc, A. (2009). Residues of pesticides in honey bee (Apis mellifera carnica) bee bread and in pollen loads from treated apple orchards. Bulletin of Environmental Contamination and Toxicology, 83, 374–377. https://doi.org/10.1007/s00128-009-9762-0
  • Søvik, E., Perry, C. J., LaMora, A., Barron, A. B., & Ben-Shahar, Y. (2015). Negative impact of manganese on honey bee foraging. Biology Letters, 11(3), 1–4. https://doi.org/10.1098/rsbl.2014.0989
  • Stanley, J., Chandrasekaran, C., Preetha, G., & Kuttalam, S. (2010). Toxicity of diafenthiuron to honey bees in laboratory, semi-field and field conditions. Pest Management Science, 66(5), 505–510. https://doi.org/10.1002/ps.1900
  • Tamano, H., & Takeda, A. (2011). Dynamic action of neurometals at the synapse. Metallomics, 3(7), 656–661. https://doi.org/10.1039/c1mt00008j
  • Tian, Y., & Wang, L. (2018). Octopamine mediates protein-seeking behavior in mated female Drosophila. Cell Discovery, 4(66), 1–5. https://doi.org/10.1038/s41421-018-0063-9
  • Tong, Z., Duan, J., Wu, Y., Liu, Q., He, Q., Shi, Y., Yu, L., & Cao, H. (2018). A survey of multiple pesticide residues in pollen and beebread collected in China. Science of the Total Environment, 640–641, 1578–1586. https://doi.org/10.1016/j.scitotenv.2018.04.424
  • Vergoz, V., Roussel, E., Sandoz, J. C., & Giurfa, M. (2007). Aversive learning in honey bees revealed by the olfactory conditioning of the sting extension reflex. PLoS One. 3(e288), 1–10. https://doi.org/10.1371/journal.pone.0000288
  • Zaidi, A., Fernandes, D., Bean, J. L., & Michaelis, M. L. (2009). Effects of paraquat-induced oxidative stress on the neuronal plasma membrane Ca2+-ATPase. Free Radical Biology and Medicine, 47(10), 1507–1514. https://doi.org/10.1016/j.freeradbiomed.2009.08.018
  • Zhou, C., & Li, X. (2018). Cytotoxicity of chlorpyrifos to human liver hepatocellular carcinoma cells: Effects on mitochondrial membrane potential and intracellular free Ca2. +Toxin Reviews, 37(4), 259–268. https://doi.org/10.1080/15569543.2017.1386686

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.