89
Views
0
CrossRef citations to date
0
Altmetric
NOSEMA AND RELATIVES

A first approach in the correlation of pathogens load affecting Bombus pauloensis to the land use in Buenos Aires Province

ORCID Icon, , , , , , , , , , , , & show all
Pages 297-305 | Received 08 May 2023, Accepted 18 Dec 2023, Published online: 12 Feb 2024

References

  • Abrahamovich, A. H., Tellería, M. C., & Díaz, N. B. (2001). Bombus species and their associated flora in Argentina. Bee World, 82(2), 76–87. https://doi.org/10.1080/0005772X.2001.11099505
  • Abrahamovich, A., Díaz, N., & Lucia, M. (2007). Identificación de las “abejas sociales” del género Bombus (Hymenoptera, Apidae) presentes en la Argentina: Clave pictórica, diagnosis, distribución geográfica y asociaciones florales. Revista de la Facultad de Agronomía, La Plata, 106(2), 165–176.
  • Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. (2008). Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Current Biology: CB, 18(20), 1572–1575. https://doi.org/10.1016/j.cub.2008.08.066
  • Baffoni, L., Alberoni, D., Gaggìa, F., Braglia, C., Stanton, C., Ross, P. R., & Di Gioia, D. (2021). Honey bee exposure to veterinary drugs: How is the gut microbiota affected? Microbiology Spectrum, 9(1), e00176-21. https://doi.org/10.1128/Spectrum.00176-21
  • Becker, D. J., Streicker, D. G., & Altizer, S. (2015). Linking anthropogenic resources to wildlife–pathogen dynamics: A review and meta‐analysis. Ecology Letters, 18(5), 483–495. https://doi.org/10.1111/ele.12428
  • Bodden, J. M., Hazlehurst, J. A., & Wilson Rankin, E. E. (2019). Floral traits predict frequency of defecation on flowers by foraging bumble bees. Journal of Insect Science, 19(5), 2. https://doi.org/10.1093/jisesa/iez091
  • Bravi, M. E., Alvarez, L. J., Lucia, M., Pecoraro, M. R., García, M. L. G., & Reynaldi, F. J. (2019). Wild bumble bees (Hymenoptera: Apidae: Bombini) as a potential reservoir for bee pathogens in northeastern Argentina. Journal of Apicultural Research, 58(5), 710–713. https://doi.org/10.1080/00218839.2019.1655183
  • Brown, M. J., Loosli, R., & Schmid‐Hempel, P. (2000). Condition‐dependent expression of virulence in a trypanosome infecting bumble bees. Oikos, 91(3), 421–427. https://doi.org/10.1034/j.1600-0706.2000.910302.x
  • Brown, M. J., Schmid‐Hempel, R., & Schmid‐Hempel, P. (2003). Strong context‐dependent virulence in a host–parasite system: Reconciling genetic evidence with theory. Journal of Animal Ecology, 72(6), 994–1002. https://doi.org/10.1046/j.1365-2656.2003.00770.x
  • Bush, A. O., Lafferty, K. D., Lotz, J. M., & Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology, 83(4), 575–583. https://doi.org/10.2307/3284227
  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252. https://doi.org/10.1016/S0034-4257(97)00104-1
  • Cavigliasso, P., Phifer, C. C., Adams, E. M., Flaspohler, D., Gennari, G. P., Licata, J. A., & Chacoff, N. P. (2020). Spatio-temporal dynamics of landscape use by the bumble bee Bombus pauloensis (Hymenoptera: Apidae) and its relationship with pollen provisioning. PloS One, 15(7), e0216190. https://doi.org/10.1371/journal.pone.0216190
  • Cilia, G., Cardaio, I., dos Santos, P. E. J., Ellis, J. D., & Nanetti, A. (2018). The first detection of Nosema ceranae (Microsporidia) in the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). Apidologie, 49(5), 619–624. https://doi.org/10.1007/s13592-018-0589-8
  • Cilia, G., Flaminio, S., Ranalli, R., Zavatta, L., Nanetti, A., Bortolotti, L., & Bogo, G. (2023). Presence of Apis mellifera pathogens in different developmental stages of wild Hymenoptera species. Bulletin of Insectology, 76(1), 147–154.
  • Clark, T. B. (1977). A filamentous virus of the honey bee. Journal of Invertebrate Pathology, 32(3), 332–340. https://doi.org/10.1016/0022-2011(78)90197-0
  • Cohen, H., Quistberg, R. D., & Philpott, S. M. (2017). Vegetation management and host density influence bee–parasite interactions in urban gardens. Environmental Entomology, 46(6), 1313–1321. https://doi.org/10.1093/ee/nvx155
  • Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S., & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28, 1–16. https://doi.org/10.1016/j.ecoser.2017.09.008
  • Crawley, M. J. (2007). The R Book. Wiley.
  • Cunningham-Minnick, M. J., Peters, V. E., & Crist, T. O. (2019). Nesting habitat enhancement for wild bees within soybean fields increases crop production. Apidologie, 50(6), 833–844. https://doi.org/10.1007/s13592-019-00691-y
  • Di Pasquale, G., Salignon, M., Le Conte, Y., Belzunces, L. P., Decourtye, A., Kretzschmar, A., Suchail, S., Brunet, J.-L., & Alaux, C. (2013). Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PloS One, 8(8), e72016. https://doi.org/10.1371/journal.pone.0072016
  • Dicks, L. V., Breeze, T. D., Ngo, H. T., Senapathi, D., An, J., Aizen, M. A., Basu, P., Buchori, D., Galetto, L., Garibaldi, L. A., Gemmill-Herren, B., Howlett, B. G., Imperatriz-Fonseca, V. L., Johnson, S. D., Kovács-Hostyánszki, A., Kwon, Y. J., Lattorff, H. M. G., Lungharwo, T., Seymour, C. L., Vanbergen, A. J., & Potts, S. G. (2021). A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature Ecology & Evolution, 5(10), 1453–1461. https://doi.org/10.1038/s41559-021-01534-9
  • Fernandez De Landa, G., Alberoni, D., Baffoni, L., Fernandez De Landa, M., Revainera, P. D., Porrini, L. P., … Di Gioia, D. (2023). The gut microbiome of solitary bees is mainly affected by pathogen assemblage and partially by land use. Environmental Microbiome, 18(1), 1–17.
  • Figueroa, L. L., Grab, H., Ng, W. H., Myers, C. R., Graystock, P., McFrederick, Q. S., & McArt, S. H. (2020). Landscape simplification shapes pathogen prevalence in plant‐pollinator networks. Ecology Letters, 23(8), 1212–1222. https://doi.org/10.1186/s40793-023-00494-w
  • Fries, I., & Camazine, S. (2001). Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie, 32(3), 199–214. https://doi.org/10.1051/apido:2001122
  • Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J., & Brown, M. J. F. (2014). Disease associations between honey bees and bumble bees as a threat to wild pollinators. Nature, 506(7488), 364–366. https://doi.org/10.1038/nature12977
  • Gamboa, V., Ravoet, J., Brunain, M., Smagghe, G., Meeus, I., Figueroa, J., Riaño, D., & de Graaf, D. C. (2015). Bee pathogens found in Bombus atratus from Colombia: A case study. Journal of Invertebrate Pathology, 129, 36–39. https://doi.org/10.1016/j.jip.2015.05.013
  • Goulson, D., Lye, G. C., & Darvill, B. (2008). Decline and conservation of bumble bees. Annual Review of Entomology, 53(1), 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454
  • Goulson, D., Lepais, O., O’Connor, S., Osborne, J. L., Sanderson, R. A., Cussans, J., Goffe, L., & Darvill, B. (2010). Effects of land use at a landscape scale on bumble bee nest density and survival. Journal of Applied Ecology, 47(6), 1207–1215. https://doi.org/10.1111/j.1365-2664.2010.01872.x
  • Graystock, P., Yates, K., Evison, S. E., Darvill, B., Goulson, D., & Hughes, W. O. (2013). The Trojan hives: Pollinator pathogens, imported and distributed in bumble bee colonies. Journal of Applied Ecology, 50(5), 1207–1215. https://doi.org/10.1111/1365-2664.12134
  • Graystock, P., Goulson, D., & Hughes, W. O. (2014). The relationship between managed bees and the prevalence of parasites in bumble bees. PeerJ. 2, e522. https://doi.org/10.7717/peerj.522
  • Hagen, M., Wikelski, M., & Kissling, W. D. (2011). Space use of bumble bees (Bombus spp.) revealed by radio-tracking. PloS One, 6(5), e19997. https://doi.org/10.1371/journal.pone.0019997
  • Hicks, B. J., Pilgrim, B. L., Perry, E., & Marshall, H. D. (2018). Observations of native bumble bees inside of commercial colonies of Bombus impatiens (Hymenoptera: Apidae) and the potential for pathogen spillover. The Canadian Entomologist, 150(4), 520–531. https://doi.org/10.4039/tce.2018.28
  • Ivers, N. A., Jordan, Z., Cohen, H., Tripodi, A., Brown, M. J. F., Liere, H., Lin, B. B., Philpott, S., & Jha, S. (2022). Parasitism of urban bumble bees influenced by pollinator taxonomic richness, local garden management, and surrounding impervious cover. Urban Ecosystems, 25(4), 1169–1179. https://doi.org/10.1007/s11252-022-01211-0
  • Koch, H., & Schmid-Hempel, P. (2011). Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences of the United States of America, 108(48), 19288–19292. https://doi.org/10.1073/pnas.1110474108
  • Koch, H., Woodward, J., Langat, M. K., Brown, M. J., & Stevenson, P. C. (2019). Flagellum removal by a nectar metabolite inhibits infectivity of a bumble bee parasite. Current Biology: CB, 29(20), 3494–3500.e5. https://doi.org/10.1016/j.cub.2019.08.037
  • Maggi, M., Quintana, S., Revainera, P. D., Porrini, L. P., Meroi Arcerito, F. R., Fernández de Landa, G., Brasesco, C., Di Gerónimo, V., Ruffinengo, S. R., & Eguaras, M. J. (2020). Biotic stressors affecting key apiaries in Argentina. Bee World, 97(2), 45–52. https://doi.org/10.1080/0005772X.2019.1699007
  • Margolis, L., Esch, G. W., Holmes, J. C., Kuris, A. M., & Schad, G. (1982). The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). The Journal of Parasitology, 68(1), 131–133. https://doi.org/10.2307/3281335
  • Martín-Hernández, R., Bartolomé, C., Chejanovsky, N., Le Conte, Y., Dalmon, A., Dussaubat, C., García-Palencia, P., Meana, A., Pinto, M. A., Soroker, V., & Higes, M. (2018). Nosema ceranae in Apis mellifera: A 12 years postdetection perspective. Environmental Microbiology, 20(4), 1302–1329. https://doi.org/10.1111/1462-2920.14103
  • McArt, S. H., Urbanowicz, C., McCoshum, S., Irwin, R. E., & Adler, L. S. (2017). Landscape predictors of pathogen prevalence and range contractions in US bumble bees. Proceedings of the Royal Society B: Biological Sciences, 284(1867), 20172181. https://doi.org/10.1098/rspb.2017.2181
  • McMahon, D. P., Fürst, M. A., Caspar, J., Theodorou, P., Brown, M. J., & Paxton, R. J. (2015). A sting in the spit: Widespread cross‐infection of multiple RNA viruses across wild and managed bees. The Journal of Animal Ecology, 84(3), 615–624. https://doi.org/10.1111/1365-2656.12345
  • McNeil, D. J., McCormick, E., Heimann, A. C., Kammerer, M., Douglas, M. R., Goslee, S. C., Grozinger, C. M., & Hines, H. M. (2020). Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Scientific Reports, 10(1), 22306. https://doi.org/10.1038/s41598-020-78119-2
  • Miñarro, M., & García, D. (2021). Complementary contribution of wild bumble bees and managed honey bee to the pollination niche of an introduced blueberry crop. Insects, 12(7), 595. https://doi.org/10.3390/insects12070595
  • Mockler, B. K., Kwong, W. K., Moran, N. A., & Koch, H. (2018). Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Applied and Environmental Microbiology, 84(7), e02335-17. https://doi.org/10.1128/AEM.02335-17
  • Müller, U. (2019). Sustainable agriculture through protection of wild bee health: Investigation of transmission risk of the honey bee pathogen Nosema ceranae. Freie Universitaet Berlin.
  • Müller, U., McMahon, D. P., & Rolff, J. (2019). Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agricultural and Forest Entomology, 21(4), 363–371. https://doi.org/10.1111/afe.12338
  • Nanetti, A., Bortolotti, L., & Cilia, G. (2021). Pathogens spillover from honey bees to other arthropods. Pathogens (Basel, Switzerland), 10(8), 1044. https://doi.org/10.3390/pathogens10081044
  • Odanaka, K. A., & Rehan, S. M. (2019). Impact indicators: Effects of land use management on functional trait and phylogenetic diversity of wild bees. Agriculture, Ecosystems & Environment, 286, 106663. https://doi.org/10.1016/j.agee.2019.106663
  • Pacini, A., Molineri, A., Antúnez, K., Cagnolo, N. B., Merke, J., Orellano, E., Bertozzi, E., Zago, L., Aignasse, A., Pietronave, H., Rodríguez, G., Palacio, M. A., Signorini, M., & Giacobino, A. (2021). Environmental conditions and beekeeping practices associated with Nosema ceranae presence in Argentina. Apidologie, 52(2), 400–417. https://doi.org/10.1007/s13592-020-00831-9
  • Pardo, L., & Jiménez, L. (2006). Observation of Flight Ranges of Bombus Atratus (Hymenoptera: Apidae) in Urban Environments. Acta Biológica Colombiana, 11(2), 131–136.
  • Paxton, R. J., Klee, J., Korpela, S., & Fries, I. (2007). Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie, 38(6), 558–565. https://doi.org/10.1051/apido:2007037
  • Pérez‐Méndez, N., Andersson, G. K. S., Requier, F., Hipólito, J., Aizen, M. A., Morales, C. L., García, N., Gennari, G. P., & Garibaldi, L. A. (2020). The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology, 57(3), 599–608. https://doi.org/10.1111/1365-2664.13561
  • Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J., Rose, R., & Vanengelsdorp, D. (2013). Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PloS One, 8(7), e70182. https://doi.org/10.1371/journal.pone.0070182
  • Plischuk, S., & Lange, C. E. (2009). Invasive Bombus terrestris (Hymenoptera: Apidae) parasitized by a flagellate (Euglenozoa: Kinetoplastea) and a neogregarine (Apicomplexa: Neogregarinorida). Journal of Invertebrate Pathology, 102(3), 263–265. https://doi.org/10.1016/j.jip.2009.08.005
  • Plischuk, S., Martín-Hernández, R., Prieto, L., Lucía, M., Botías, C., Meana, A., Abrahamovich, A. H., Lange, C., & Higes, M. (2009). South American native bumble bees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honey bees (Apis mellifera). Environmental Microbiology Reports, 1(2), 131–135. https://doi.org/10.1111/j.1758-2229.2009.00018.x
  • Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007
  • Potts, S. G., Ngo, H. T., Biesmeijer, J. C., Breeze, T. D., Dicks, L. V., Garibaldi, L. A., … Vanbergen, A. (2016). The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production.
  • Quintana, S., de Landa, G. F., Revainera, P., Meroi, F., Porrini, L., Di Geronimo, V., Brasesco, C., Plischuk, S., Eguaras, M. J., & Maggi, M. (2019). Broad Geographic and Host Distribution of Filamentous Virus in South American Native Bees. Journal of Apicultural Science, 63(2), 327–332. https://doi.org/10.2478/jas-2019-0025
  • R Development Core Team (2021). R A language and environment for statistical computingR Foundation for Statistical Computing. https://www.R-project.org/
  • Ramello, P. J., Álvarez, L. J., Almada, V., & Lucia, M. (2021). The melittofauna and its floral associations in a natural riparian forest in Buenos Aires province, Argentina. Journal of Apicultural Research, 60(2), 241–254. https://doi.org/10.1080/00218839.2020.1765489
  • Registro Nacional de Productores Agropecuarios (RENAPA). 2020. https://magyp.gob.ar/apicultura/renapa.php
  • Ricketts, T. H., Regetz, J., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Bogdanski, A., Gemmill-Herren, B., Greenleaf, S. S., Klein, A. M., Mayfield, M. M., Morandin, L. A., Ochieng’, A., Potts, S. G., & Viana, B. F. (2008). Landscape effects on crop pollination services: Are there general patterns? Ecology Letters, 11(5), 499–515. https://doi.org/10.1111/j.1461-0248.2008.01157.x
  • Salathé, R. M., & Schmid-Hempel, P. (2011). The genotypic structure of a multi-host bumble bee parasite suggests a role for ecological niche overlap. PloS One, 6(8), e22054. https://doi.org/10.1371/journal.pone.0022054
  • Samuelson, A. E., Gill, R. J., & Leadbeater, E. (2020). Urbanisation is associated with reduced Nosema sp. infection, higher colony strength and higher richness of foraged pollen in honey bees. Apidologie, 51(5), 746–762. https://doi.org/10.1007/s13592-020-00758-1
  • Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., & Desneux, N. (2016). Are bee diseases linked to pesticides?—A brief review. Environment International, 89-90, 7–11. https://doi.org/10.1016/j.envint.2016.01.009
  • Schmid-Hempel, P. (2019). Bee Parasites: Don’t Lose Your Flagellum. Current Biology: CB, 29(20), R1077–R1079. https://doi.org/10.1016/j.cub.2019.08.034
  • Sinpoo, C., Disayathanoowat, T., Williams, P. H., & Chantawannakul, P. (2019). Prevalence of infection by the microsporidian Nosema spp. in native bumble bees (Bombus spp.) in northern Thailand. PloS One, 14(3), e0213171. https://doi.org/10.1371/journal.pone.0213171
  • Theodorou, P., Radzevičiūtė, R., Settele, J., Schweiger, O., Murray, T. E., & Paxton, R. J. (2016). Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proceedings of the Royal Society B: Biological Sciences, 283(1833), 20160561. https://doi.org/10.1098/rspb.2016.0561
  • Torretta, J. P., Medan, D., & Abrahamovich, A. H. (2006). First record of the invasive bumble bee Bombus terrestris (L.)(Hymenoptera, Apidae) in Argentina. Transactions of the American Entomological Society, 132(3), 285–289.
  • Traver, B. E., & Fell, R. D. (2012). Low natural levels of Nosema ceranae in Apis mellifera queens. Journal of Invertebrate Pathology, 110(3), 408–410. https://doi.org/10.1016/j.jip.2012.04.001
  • Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Viguès, B., Brunet, J.-L., Texier, C., Biron, D. G., Blot, N., El Alaoui, H., Belzunces, L. P., & Delbac, F. (2011). Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honey bees previously infected by Nosema ceranae. PloS One, 6(6), e21550. https://doi.org/10.1371/journal.pone.0021550
  • Vray, S., Rollin, O., Rasmont, P., Dufrêne, M., Michez, D., & Dendoncker, N. (2019). A century of local changes in bumble bee communities and landscape composition in Belgium. Journal of Insect Conservation, 23(3), 489–501. https://doi.org/10.1007/s10841-019-00139-9
  • Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G., & Aizen, M. A. (2009). A meta‐analysis of bees’ responses to anthropogenic disturbance. Ecology, 90(8), 2068–2076. https://doi.org/10.1890/08-1245.1
  • Yourth, C. P., Brown, M. J. F., & Schmid-Hempel, P. (2008). Effects of natal and novel Crithidia bombi (Trypanosomatidae) infections on Bombus terrestris hosts. Insectes Sociaux, 55(1), 86–90. https://doi.org/10.1007/s00040-007-0974-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.