81
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The Micro-Capacitance Enhancement of Polyionic Liquids Grafted Onto Carbon Nanotubes on the Piezoelectric Properties of Poly(Vinylidene Fluoride) Films and Their Sensor Applications

, , , , , & show all
Pages 414-442 | Received 12 Sep 2023, Accepted 10 Oct 2023, Published online: 31 Oct 2023

References

  • Wu, J. E.; Hu, Z. Q.; Gao, X. Y.; Cheng, M. M.; Zhao, X. E.; Su, W.; Wang, L. Q.; Guan, M. M.; Du, Y. J.; Mao, R. H.; et al. Unconventional Piezoelectric Coefficients in Perovskite Piezoelectric Ceramics. J. Materiomics 2021, 7, 254–263. DOI: 10.1016/j.jmat.2021.10.004.
  • Habib, M.; Lantgios, I.; Hornbostel, K. A Review of Ceramic, Polymer and Composite Piezoelectric Materials. J. Phys. D: Appl. Phys. 2022, 55, 423002. DOI: 10.1088/1361-6463/ac8687.
  • Liu, J.; Zuo, H.; Xia, W.; Luo, Y.; Yao, D.; Chen, Y.; Wang, K.; Li, Q. Wind Energy Harvesting Using Piezoelectric Macro Fiber Composites Based on Flutter Mode. Microelectron. Eng. 2020, 231, 111333. DOI: 10.1016/j.mee.2020.111333.
  • Stadlober, B.; Zirkl, M.; Irimia-Vladu, M. Route towards Sustainable Smart Sensors: Ferroelectric Polyvinylidene Fluoride-Based Materials and Their Integration in Flexible Electronics. Chem. Soc. Rev. 2019, 48, 1787–1825. DOI: 10.1039/c8cs00928g.
  • Veved, A.; Ejuh, G. W.; Djongyang, N. Review of Emerging Materials for PVDF-Based Energy Harvesting. Energy. Rep. 2022, 8, 12853–12870. DOI: 10.1016/j.egyr.2022.09.076.
  • Khadtare, S.; Ko, E. J.; Kim, Y. H.; Lee, H. S.; Moon, D. K. A Flexible Piezoelectric Nanogenerator Using Conducting Polymer and Silver Nanowire Hybrid Electrodes for Its Application in Real-Time Muscular Monitoring System. Sens. Actuators. A. Phys. 2019, 299, 111575. DOI: 10.1016/j.sna.2019.111575.
  • Pan, Q.; Xiong, Y. A.; Sha, T. T.; You, Y. M. Recent Progress in the Piezoelectricity of Molecular Ferroelectrics. Mater. Chem. Front. 2021, 5, 44–59. DOI: 10.1039/D0QM00288G.
  • Lucia, S.; Marco, C.; Paolo, C.; Giorgio, C.; Maurizio, V. Electromechanical Characterization of Piezoelectric PVDF Polymer Films for Tactile Sensors in Robotics Applications. Sens. Actuator. A. Phys. 2011, 169, 49–58. DOI: 10.1016/j.sna.2011.05.004.
  • Sushmitha, V.; Sushmee, B. Bi2S3/PVDF/Ppy-Based Freestanding, Wearable, Transient Nanomembrane for Ultrasensitive Pressure, Strain, and Temperature Sensing. ACS Appl. Bio Mater. 2021, 4, 14–23. DOI: 10.1021/acsabm.0c01399.
  • Xin, Y.; Sun, H.; Tian, H.; Guo, C.; Li, X.; Wang, S.; Wang, C. The Use of Polyvinylidene Fluoride (PVDF) Films as Sensors for Vibration Measurement: A Brief Review. Ferroelectrics 2016, 502, 28–42. DOI: 10.1080/00150193.2016.1232582.
  • Mai, M. F.; Ke, S. M.; Lin, P.; Zeng, X. R. Ferroelectric Polymer Thin Films for Organic Electronics. J. Nanomater. 2015, 2015, 1–14. DOI: 10.1155/2015/812538.
  • Oshiro, H.; Sato, T.; Yamamoto, M.; Kono, A.; Horibe, H.; Masunaga, H.; Danno, T.; Matumoto, H.; Tanioka, A. Crystal Structure Control of Poly (Vinylidene Fluoride) Using Solvent Casting. Kobunshi Ronbunshu 2010, 67, 632–639. DOI: 10.1295/koron.67.632.
  • Shoorangiz, M.; Sherafat, Z.; Bagherzadeh, E. CNT-Loaded PVDF-KNN Nanocomposite Films with Enhanced Piezoelectric Properties. Ceram. Int. 2022, 48, 15180–15188. DOI: 10.1016/j.ceramint.2022.02.047.
  • Jonathan, N.; Coleman, Umar, K.; Werner, J. B.; Yurii, K. G. Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites. Carbon 2006, 44, 1624–1652. DOI: 10.1016/j.carbon.2006.02.038.
  • Zdenko, S.; Dimitrios, T.; Konstantinos, P.; Costas, G. Carbon Nanotube–Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties. Prog. Polym. Sci. 2010, 35, 357–401. DOI: 10.1016/j.progpolymsci.2009.09.003.
  • Bauhofer, W.; Kovacs, J. Z. A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites. Compos. Sci. Technol. 2009, 69, 1486–1498. DOI: 10.1016/j.compscitech.2008.06.018.
  • Moniruzzaman, M.; Winey, K. I. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules 2006, 39, 5194–5205. DOI: 10.1021/ma060733p.
  • Jittabut, P.; Horpibulsuk, S. Physical and Microstructure Properties of Geopolymer Nanocomposite Reinforced with Carbon Nanotubes. Mater. Today: Proc. 2019, 17, 1682–1692. DOI: 10.1016/j.matpr.2019.06.199.
  • Jason, P. Hallett; Tom, W. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. Chem. Rev. 2011, 111, 3508–3576. DOI: 10.1021/cr1003248.
  • Kausar, A. Research Progress in Frontiers of Poly (Ionic Liquid)s: A Review. Polym-Plast Technol. 2017, 56, 1823–1838. DOI: 10.1080/03602559.2017.1289410.
  • Ke, K.; Pötschke, P.; Gao, S.; Voit, B. An Ionic Liquid as Interface Linker for Tuning Piezoresistive Sensitivity and Toughness in Poly (Vinylidene Fluoride)/Carbon Nanotube Composites. ACS Appl. Mater. Interfaces 2017, 9, 5437–5446. DOI: 10.1021/acsami.6b13454.
  • Xu, P.; Fu, W. J.; Cui, Z. P.; Ding, Y. S. Synergistic Promotion of Polar Phase Crystallization of PVDF by Ionic Liquid with PEG Segment. Appl. Surf. Sci. 2018, 444, 480–484. DOI: 10.1016/j.apsusc.2018.02.242.
  • Hu, Y. D.; Xu, P.; Luo, X.; Zuo, X. G.; Chen, F.; Ding, Y. S. Effect of Graphene Modified by P[MMA-IL] on the Crystallization and Dielectric Behavior of PVDF Composite Film. Acta Polym. Sin. 2017, 5, 776–784. DOI: 10.11777/j.issn1000-3304.2017.16231.
  • Huang, X.; Zhou, Z.; Chen, G. X.; Li, Q. Composite Material with High Dielectric Constant and Low Dielectric Loss Obtained through Grafting of Cyano Groups in Imidazolium Ionic Liquids. Chem. Phys. Lett. 2018, 711, 173–177. DOI: 10.1016/j.cplett.2018.09.015.
  • Chatterjee, P.; Nofen, E. M.; Xu, W.; Hom, C.; Jiang, H.; Dai, L. L. Pyrrole-Based Poly(Ionic Liquids) as Efficient Stabilizers for Formation of Hollow Multi-Walled Carbon Nanotubes Particles. J. Colloid Interface Sci. 2017, 504, 140–148. DOI: 10.1016/j.jcis.2017.03.093.
  • Gregorio, R. Determination of the α, β and γ Crystalline Phase of Poly(Vinylidene Fluoride) Films Prepared at Different Conditions. J. Appl. Polym. Sci. 2006, 100, 3272–3279. DOI: 10.1002/app.23137.
  • Yang, L.; Ji, H. L.; Qiu, J. H.; Zhu, K. J.; Shao, B. Effect of Temperature on the Crystalline Phase and Dielectric and Ferroelectric Properties of Poly(Vinylidene Fluoride) Film. J. Intell. Mater. Syst. Struct. 2014, 25, 858–864. DOI: 10.1177/1045389X13510217.
  • Wang, S. T.; Ma, W. Z.; Yang, H. C.; Cao, Z.; Liu, C. L.; Gong, F. H. Exploration of the Nucleation-Growth Effect of Cetyltrimethylammonium Bromide for High β-Poly(Vinylidene Fluoride) Crystallization. J. Macromol. Sci. Part B. Phys. 2022, 61, 393–412. DOI: 10.1080/00222348.2022.2030991.
  • Ma, W. Z.; Yuan, H. G.; Wang, X. The Effect of Chain Structures on the Crystallization Behavior and Membrane Formation of Poly(Vinylidene Fluoride) Copolymers. Membranes (Basel) 2014, 4, 243–256. DOI: 10.3390/membranes4020243.
  • Wang, J. C.; Fu, Q.; Zhang, Q. Inducing of Dominant Polar Forms in Poly(Vinylidene Fluoride) with Super Toughness by Adding Alkyl Ammonium Salt. Polymer 2012, 53, 5455–5458. DOI: 10.1016/j.polymer.2012.09.057.
  • Hang, M. H.; Zhao, H.; He, D. L.; Bai, J. B. Largely Enhanced Dielectric Properties of Carbon Nanotubes/Polyvinylidene Fluoride Binary Nanocomposites by Loading a Few Boron Nitride Nanosheets. Appl. Phys. Lett. 2016, 109, 072906. DOI: 10.1063/1.4961390.
  • Wang, Y.; Zhang, Y.; Cai, N.; Xue, J. Enhanced Adsorption Performance of Polypyrrole Composite Electrode with Ionic Liquid Doped for Low Concentration Heavy Metals in CDI. J. Environ. Chem. Eng. 2022, 10, 109028. DOI: 10.1016/j.jece.2022.109028.
  • Luo, R.; Wu, Y.; Li, Q.; Du, B.; Zhou, S.; Li, H. Rational Synthesis and Characterization of IL-CNTs-PANI Microporous Polymer Electrolyte Film. Syn. Met. 2021, 274, 116720. DOI: 10.1016/j.synthmet.2021.116720.
  • Daniela, M. C.; Carlos, M. C.; Jose, C. R. H.; Isabel, T. A.; Laura, T. B.; Constantino, T. C.; Jose, M. D.; Ivan, K.; Senentxu, L. M.; Jose, G. R. Crystallization Monitoring of Semicrystalline Poly (Vinylidene Fluoride)/1-Ethyl-3-Methylimidazolium Hexafluorophosphate [Emim][PF6] Ionic Liquid Blends. Cryst. Growth. Des. 2021, 21, 4406–4416. DOI: 10.1021/acs.cgd.1c00333.
  • Feng, Y.; Chen, P.; Zhu, Q.; Qin, B.; Li, Y.; Deng, Q.; Li, X.; Li, X.; Peng, C. Boron Nitride Nanosheet-Induced Low Dielectric Loss and Conductivity in PVDF-Based High-k Ternary Composites Bearing Ionic Liquid. Mater. Today. Commun. 2021, 26, 101896. DOI: 10.1016/j.mtcomm.2020.101896.
  • Xu, P.; Fu, W.; Hu, Y.; Ding, Y. Effect of Annealing Treatment on Crystalline and Dielectric Properties of PVDF/PEG-Containing Ionic Liquid Composites. Compos. Sci. Technol. 2018, 158, 1–8. DOI: 10.1016/j.compscitech.2018.01.039.
  • Pal, M.; Subhedar, K. M. CNT Yarn Based Solid State Linear Supercapacitor with Multi-Featured Capabilities for Wearable and Implantable Devices. Energy Storage Mater. 2023, 57, 136–170. DOI: 10.1016/j.ensm.2023.01.051.
  • Al-Harthi, M. A.; Hussain, M. Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites. Polymers (Basel) 2022, 14, 2976. DOI: 10.3390/polym14152976.
  • Tuncay, G.; Turken, T.; Koyuncu, I. Investigation of Different Molecular Weight Polyvinylidene Fluoride (PVDF) Polymer for the Fabrication and Performance of Braid Hollow Fiber Membranes. Environ. Technol. 2022, 115, 1–14. DOI: 10.1080/09593330.2022.2112092.
  • Andrew, J. S.; Clarke, D. R. Effect of Electrospinning on the Ferroelectric Phase Content of Polyvinylidene Difluoride Fibers. Langmuir 2008, 24, 670–672. DOI: 10.1021/la7035407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.