2,600
Views
5
CrossRef citations to date
0
Altmetric
Review article

Robots and shocks: emerging non-herbicide weed control options for vegetable and arable cropping

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 81-103 | Received 24 Mar 2023, Accepted 24 Aug 2023, Published online: 31 Aug 2023

References

  • Agritech New Zealand. 2020. Aotearoa Agritech unleashed - driving productivity, sustainability & economic growth. Wellington: Digital Nation.
  • Ahmad J, Muhammad K, Ahmad I, Ahmad W, Smith ML, Smith LN, Jain DK, Wang H, Mehmood I. 2018. Visual features based boosted classification of weeds for real-time selective herbicide sprayer systems. Computers in Industry. 98:23–33. doi:10.1016/j.compind.2018.02.005.
  • Akerman E. 2015. Bosch's giant robot can punch weeds to death. Retrieved 8 August 2023 https://spectrum.ieee.org/bosch-deepfield-robotics-weed-control.
  • Alcántara-de la Cruz R, Cruz-Hipolito HE, Domínguez-Valenzuela JA, De Prado R. 2021. Glyphosate ban in Mexico: potential impacts on agriculture and weed management. Pest Management Science. 77(9):3820–3831. doi:10.1002/ps.6362.
  • Alluvione F, Moretti B, Sacco D, Grignani C. 2011. EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy. 36(7):4468–4481. doi:10.1016/j.energy.2011.03.075.
  • An N, Tang CS, Cheng Q, Wang DY, Shi B. 2020. Laboratory characterization of sandy soil water content during drying process using electrical resistivity/resistance method (ERM). Bulletin of Engineering Geology and the Environment. 79(8):4411–4427. doi:10.1007/s10064-020-01805-y.
  • Andreasen C, Hansen L, Streibig JC. 1999. The effect of ultraviolet radiation on the fresh weight of some weeds and crops. Weed Technology. 13(3):554–560. doi:10.1017/S0890037X00046194.
  • Andreasen C, Saberi M, Rakhmatulin I. 2021. Weed control with laser beams using autonomous vehicles: pros and cons. FIRA 2021, FIRA.
  • Andreasen C, Scholle K, Saberi M. 2022. Laser weeding with small autonomous vehicles: friends or foes? Frontiers in Agronomy. 4. doi:10.3389/fagro.2022.841086.
  • Anken T, Latsch A. 2022. Detection rate and spraying accuracy of Ecorobotix ARA. In: Gandorfer M, Hoffmann C, El Benni N, Cockburn M, Anken T, Floto H, editors. 42nd GIL Annual Conference, Artificial Intelligence in the Agricultural and Food Sector. Bonn: Society for Informatics.
  • Annu K, Andrew JP, Nicholas EK, Audrey G, Steve L. 2023. Effect of crimson clover on the critical period of weed control in conservation tillage corn. Frontiers in Agronomy. 4.
  • Ascard J. 1995. Effects of flame weeding on weed species at different developmental stages. Weed Research. 35(5):397. doi:10.1111/j.1365-3180.1995.tb01636.x.
  • Ascard J, Hatcher PE, Melander B, Upadhyaya MK. 2007. Thermal weed control. In: Upadhyaya MK, Blackshaw RE, editors. Non-chemical weed management: principles, concepts and technology. Wallingford, UK: Cabi; p. 155–175.
  • Asscheman E. 2023. Carbon Robotics bags $30 m for weed control with autonomous laser bots. Retrieved 21 April 2023 https://www.futurefarming.com/tech-in-focus/field-robots/carbon-robotics-bags-30m-for-weed-control-with-autonomous-laser-bots/.
  • Audsley E. 2000. Systematic procedures for calculating agricultural performance data for comparing systems. In: Weidema BP, Meeusen MJG, editors. Agricultural data for life cycle assessments. The Hague: Agricultural Economics Research Institute (LEI); p. 35–46.
  • Bajwa AA, Mahajan G, Chauhan BS. 2015. Nonconventional weed management strategies for modern agriculture. Weed Science. 63(4):723–747. doi:10.1614/WS-D-15-00064.1.
  • Bakker T, Asselt K, Bontsema J, Müller J, Straten G. 2010. Systematic design of an autonomous platform for robotic weeding. Journal of Terramechanics. 47(2):63–73. doi:10.1016/j.jterra.2009.06.002.
  • Balzhaeuser J, Stroebel JMM, Koeller K, Vdi MEG. 2012. Vine-oriented hot water application for thermal weed control in viticulture. Conference: Agricultural Engineering: Land - Technik 2012: Mit Eahrung Und Innovationskraft Zu Mehr Effizienz. p. 449-454.
  • Barber A. 2010. New Zealand fuel and electricity total primary energy and life cycle greenhouse gas emission factors.
  • Barber A, Lucock D. 2006. Total energy indicators: Benchmarking organic, integrated and conventional sheep and beef farms 06/07.
  • Barber A, Stenning H. 2022. NZ fuel and electricity – total primary energy and GHG emission factors 2022.
  • Bauer MV, Marx C, Bauer FV, Flury DM, Ripken T, Streit B. 2020. Thermal weed control technologies for conservation agriculture-a review. Weed Research. 60(4):241–250. doi:10.1111/wre.12418.
  • Bawden O, Kulk J, Russell R, McCool C, English A, Dayoub F, Lehnert C, Perez T. 2017. Robot for weed species plant-specific management. Journal of Field Robotics. 34(6):1179–1199. doi:10.1002/rob.21727.
  • Baxter N. 2022. Lasers and electricity show weed zapping potential. Retrieved 4 February 2023 https://groundcover.grdc.com.au/weeds-pests-diseases/weeds/lasers-and-electricity-show-weed-zapping-potential.
  • Beckie HJ, Flower KC, Ashworth MB. 2020. Farming without Glyphosate? Plants. 9(1):96. doi:10.3390/plants9010096.
  • Bennett C. 2019. Could electricity be a new weed killer? Retrieved 19 May 2022 https://www.agweb.com/news/crops/crop-production/could-electricity-be-new-weed-killer-0.
  • Blasco J, Aleixos N, Roger JM, Rabatel G, Moltó E. 2002. Automation and emerging technologies. robotic weed control using machine vision. Biosystems Engineering. 83:149–157. doi:10.1006/bioe.2002.0109.
  • Bloomer DJ. 2017a. In search of farm robots Chapter 3: Switzerland, France and England. NZ Grower. 64-65.
  • Bloomer DJ. 2017b. In search of farm robots Chapter 1: Australia. The Orchardist. 46-47.
  • Bloomer DJ, Harrington KC, Ghanizadeh H, James TK. 2022. Micro electric shocks control broadleaved and grass weeds. Agronomy. 12(9). doi:10.3390/agronomy12092039.
  • Bloomer DJ, Posthuma LA. 2020. Engaging to change: constraints to on-farm adoption. In: Christensen CL, Horne DJ, Singh R, editors. Nutrient Management in Farmed Landscapes. Palmerston North: Massey University.
  • Bogue R. 2016. Robots poised to revolutionise agriculture. Industrial Robot: An International Journal. 43(5):450–456. doi:10.1108/IR-05-2016-0142.
  • Brodie G. 2012. Applications of microwave heating in agricultural and forestry related industries. The Development and Application of Microwave Heating. 45–78.
  • Brodie G, Pasma L, Bennett H, Harris G, Woodworth J. 2007. Evaluation of microwave soil pasteurization for controlling germination of perennial ryegrass (Lolium perenne) seeds. Plant Protection Quarterly. 22(4):150–154.
  • Buddenhagen CE, Gunnarsson M, Rolston P, Chynoweth RJ, Bourdot G, James TK. 2019. Costs and risks associated with surveying the extent of herbicide resistance in New Zealand. New Zealand Journal of Agricultural Research. doi:10.1080/00288233.2019.1636829.
  • Buddenhagen CE, James TK, Ngow Z, Hackell DL, Rolston MP, Chynoweth RJ, Gunnarsson M, Li F, Harrington KC, Ghanizadeh H. 2021. Resistance to post-emergent herbicides is becoming common for grass weeds on New Zealand wheat and barley farms. PLoS ONE. 16(10):1–15. doi:10.1371/journal.pone.0258685.
  • Burnside OC. 1993. Weed science: the step child. Weed Technology. 7(2):515–518. doi:10.1017/S0890037X00027974.
  • Carbon Robotics. 2023. LaserWeeder the future of weed control. In: Robotics C ed.
  • Carr ER. 1994. Apparatus for killing weeds. USA patent US5600918A.
  • Carrington D. 2021. Killer farm robot dispatches weeds with electric bolts. Retrieved 03 Aug 2022 10:13 NZST 2022, from https://www.theguardian.com/environment/2021/apr/29/killer-farm-robot-dispatches-weeds-with-electric-bolts.
  • Carson R. 2002. Silent spring, 40th anniversary edition. Boston: Houghton Mifflin. 2002. ©1962.
  • Chen Z, Zhang C, Li N, Sun Z, Li W, Zhang B. 2015. Study review and analysis of high performance intra-row weeding robot. Transactions of the Chinese Society of Agricultural Engineering. 31(5):1–8.
  • Christensen S, Sogaard HT, Kudsk P, Norremark M, Lund I, Nadimi ES, Jorgensen R. 2009. Site-specific weed control technologies. Weed Research. 49(3):233–241. doi:10.1111/j.1365-3180.2009.00696.x.
  • Claver H. 2022. Electric weeding with high frequency electricity gives better weed control with lower energy use. Future Farming. Retrieved 14 September 2022 from https://www.futurefarming.com/crop-solutions/weed-pest-control/electric-weeding-with-high-frequency-electricity-gives-better-weed-control-with-lower-energy-use/.
  • Coleman GY, Betters C, Squires C, Leon-Saval S, Walsh MJ. 2021. Low energy laser treatments control annual ryegrass (Lolium rigidum). Frontiers in Agronomy. 2(35).
  • Coleman GY, Salter W, Walsh MJ. 2022. OpenWeedLocator (OWL): an open-source, low-cost device for fallow weed detection. Scientific Reports. 12(1):170. doi:10.1038/s41598-021-03858-9.
  • Coleman GY, Stead A, Rigter M, Xu Z, Johnson DW, Brooker G, Sukkarieh S, Walsh MJ. 2019. Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control. Weed Technology. 33(4):633. doi:10.1017/wet.2019.32.
  • Crinnion WJ. 2010. Organic foods contain higher levels of certain nutrients, lower levels of pesticides, and may provide health benefits for the consumer. Environmental Medicine. 15(Alternative Medicine Review):9.
  • Danley S. 2023. McCain foods investing in regenerative farming. Food Business News, Sosland Publishing.
  • Datta A, Knezevic SZ. 2013. Flaming as an alternative weed control method for conventional and organic agronomic crop production systems: a review. Advances in Agronomy. 118:399–428. doi:10.1016/B978-0-12-405942-9.00006-2.
  • De Cauwer B, Bogaert S, Claerhout S, Bulcke R, Reheul D, Kim D-S. 2015. Efficacy and reduced fuel use for hot water weed control on pavements. Weed Research. 55(2):195–205. doi:10.1111/wre.12132.
  • De Cauwer B, De Keyser A, Biesemans N, Claerhout S, Reheul D. 2016. Impact of wetting agents, time of day and periodic energy dosing strategy on the efficacy of hot water for weed control. Weed Research. 56(4):323–334. doi:10.1111/wre.12212.
  • Devcich DA, Pedersen IK, Petrie KJ. 2007. You eat what you are: modern health worries and the acceptance of natural and synthetic additives in functional foods. Appetite. 48(3):333–337. doi:10.1016/j.appet.2006.09.014.
  • Diprose MF. 2016. Apparatus and method for electrically killing plants patent WO2016016627.
  • Diprose MF, Benson FA. 1984. Electrical methods of killing plants. Journal of Agricultural Engineering Research. 30:197–209. doi:10.1016/S0021-8634(84)80021-9.
  • Diprose MF, Benson FA, Hackam R. 1980. Electrothermal control of weed beet and bolting sugar beet. Elektrothermische Bekämpfung von Unkrautrüben und Zucker-rübenschossern. 20(5):311.
  • Diprose MF, Fletcher R, Longden PC, Champion MJ. 1985. Use of electricity to control bolters in sugar beet (Beta vulgaris L.): a comparison of the electrothermal with chemical and mechanical cutting methods. Anwendung von Elektrizität zur Bekämpfung von Schossern in Zuckerrüben (Beta vulgaris L.):Vergleich der elektrothermischen Methode mit der chemischen und dem mechanischen Schneiden. 25(1):53.
  • Diprose MF, Hackam R, Benson FA. 1978. Weed control by high voltage electric shocks. Proceedings 1978 British Crop Protection Conference - Weeds. p. 443-450.
  • Dykes WG. Allis-Chalmers Corp, assignee 1977. Plant destruction using electricity. United States of America patent US4177603A.
  • Ecorobotix SA. 2023. Smart spraying for ultra-localised treatments of your row crops, pastures and lawns. Retrieved Mar 21, 2023 2023, from https://ecorobotix.com/en/.
  • Fennimore SA, Cutulle M. 2019. Robotic weeders can improve weed control options for specialty crops. Pest Management Science. 75(7):1767–1774. doi:10.1002/ps.5337.
  • Fennimore SA, Slaughter DC, Siemens MC, Leon RG, Saber MN. 2016. Technology for automation of weed control in specialty crops. Weed Technology. 30(4):823–837. doi:10.1614/WT-D-16-00070.1.
  • Forbes SL, Cohen DA, Cullen R, Wratten SD, Fountain J. 2009. Consumer attitudes regarding environmentally sustainable wine: an exploratory study of the New Zealand marketplace. Journal of Cleaner Production. 17(13):1195–1199. doi:10.1016/j.jclepro.2009.04.008.
  • Forcella F. 2009a. Potential use of abrasive air-propelled agricultural residues for weed control. Weed Research. 49(4):341–345. doi:10.1111/j.1365-3180.2009.00711.x.
  • Forcella F. 2009b. Potential of air-propelled abrasives for selective weed control. Weed Technology. 23(2):317–320. doi:10.1614/WT-08-099.1.
  • Forcella F. 2017. Spent coffee grounds as air-propelled abrasive grit for weed control in organic production. Weed Technology. 31(5):769–772. doi:10.1017/wet.2017.42.
  • Forcella F. 2019. Weeding with walnuts - a new approach to non-chemical weed control. In: Bloomer DJ, editor. LandWISE 2019: Rethinking Best Practice. Havelock North, New Zealand: LandWISE Inc.
  • Forcella F, James T, Rahman A. 2011. Post-emergence weed control through abrasion with an approved organic fertilizer. Renewable Agriculture and Food Systems. 26(1):31–37. doi:10.1017/S1742170510000438.
  • Francis GS. 1995. Management practices for minimising nitrate leaching after ploughing temporary leguminous pastures in Canterbury, New Zealand. Journal of Contaminant Hydrology. 20(3):313–327. doi:10.1016/0169-7722(95)00076-3.
  • Frasconi C, Fontanelli M, Raffaelli M, Peruzzi A. 2014. Design and full realization of physical weed control (PWC) automated machine within the RHEA project. International Conference of Agricultural Engineering. Zurich. p. 7.
  • Froud-Williams RJ. 2017. Weed science research: past present and future perspectives. In: Hatcher PE, Froud-Williams RJ, editors. Weed Research. Chichester, UK: John Wiley & Sons Ltd; p. 1–32.
  • Galati A, Schifani G, Crescimanno M, Migliore G. 2019. “Natural wine” consumers and interest in label information: an analysis of willingness to pay in a new Italian wine market segment. Journal of Cleaner Production. 227:405–413. doi:10.1016/j.jclepro.2019.04.219.
  • Galbreath R. 2023. Agricultural and horticultural research. Retrieved 17 March 2023 https://teara.govt.nz/en/agricultural-and-horticultural-research/print.
  • Gerhards R. 2018. Weed suppression ability and yield impact of living mulch in cereal crops. Agriculture. 8(3):39. doi:10.3390/agriculture8030039.
  • Ghanizadeh H. 2015. Aspects of herbicide resistance in three New Zealand weed species. Unpublished thesis, Massey University, Palmerston North. 266 p.
  • Ghanizadeh H, Buddenhagen CE, Griffiths AG, Harrington KC, Ngow Z. 2022b. Target-site and non-target site resistance mechanisms are associated with iodosulfuron resistance in Lolium perenne L. New Zealand Journal of Agricultural Research. doi:10.1080/00288233.2022.2153875.
  • Ghanizadeh H, Buddenhagen CE, Harrington KC, Griffiths AG, Ngow Z. 2022a. Pinoxaden resistance in Lolium perenne L. is due to both target-site and non-target-site mechanisms. Pesticide Biochemistry and Physiology. doi:10.1016/j.pestbp.2022.105103.
  • Ghanizadeh H, Harrington KC. 2017. Non-target site mechanisms of resistance to herbicides. p. 24-34.
  • Ghanizadeh H, Harrington KC. 2021. Herbicide resistant weeds in New Zealand: state of knowledge. New Zealand Journal of Agricultural Research. 64(4):471–482. doi:10.1080/00288233.2019.1705863.
  • Ghanizadeh H, Harrington KC, Buddenhagen CE, James TK. 2019. The genetic inheritance of herbicide resistance in weeds. Critical Reviews in Plant Sciences. 38(4):295–312. doi:10.1080/07352689.2019.1665769.
  • Ghanizadeh H, Harrington KC, Mesarich CH. 2020. The target site mutation Ile-2041-Asn is associated with resistance to ACCase-inhibiting herbicides in Lolium multiflorum. New Zealand Journal of Agricultural Research. 63(3):416–429. doi:10.1080/00288233.2019.1620296.
  • Giovannetti J. 2022. Labour shortages hitting New Zealand. The Bulletin.
  • Grelet G, Lang S. 2021. Regenerative agriculture in Aotearoa New Zealand: research pathways to build science-based evidence and national narratives. 59 p.
  • Griepentrog HW, Nørremark M, Soriano JF. 2006. Close-to-crop thermal weed control using a CO2 laser. CIGR World Congress: Agricultural Engineering for a Better World. Bonn, Germany, CIGR.
  • Hageman KJ, Aebig CHF, Luong KH, Kaserzon SL, Wong CS, Reeks T, Greenwood M, Macaulay S, Matthaei CD. 2019. Current-use pesticides in New Zealand streams: comparing results from grab samples and three types of passive samplers. Environmental Pollution. 254(Pt A):112973. doi:10.1016/j.envpol.2019.112973.
  • Hague T, Tillett ND. 2001. A bandpass filter-based approach to crop row location and tracking. Mechatronics. 11(1):1–12. doi:10.1016/S0957-4158(00)00003-9.
  • Harrington KC, Ghanizadeh H, James TK, Parker MD. 2016. Strategies to manage the evolution of glyphosate resistance in New Zealand. New Zealand Plant Protection. 69:252–257. doi:10.30843/nzpp.2016.69.5944.
  • Harvey J, Reid D, Brown F, Penny H. 2019. Weed away final report.
  • Heap I. 2022. The international survey of herbicide resistant weeds Friday, August 26, 2022 ed. online.
  • Heisel T, Schou J, Christensen S, Andreasen C. 2001. Cutting weeds with a CO2 laser. Weed Research. 41:19–21. doi:10.1046/j.1365-3180.2001.00212.x.
  • Helander M, Saloniemi I, Omacini M, Druille M, Salminen JP, Saikkonen K. 2018. Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Science of the Total Environment. 642:285–291. doi:10.1016/j.scitotenv.2018.05.377.
  • Helsel ZR, Pimentel D. 2007. Energy in pesticide production and use. Encyclopedia of pest management. 2:157–60.
  • Hoek AC, Pearson D, James SW, Lawrence MA, Friel S. 2017. Shrinking the food-print: a qualitative study into consumer perceptions, experiences and attitudes towards healthy and environmentally friendly food behaviours. Appetite. 108:117–131. doi:10.1016/j.appet.2016.09.030.
  • Hoschle I. 1984. Effect of microwaves on higher plants and soil organisms in respect of their use in plant protection. Plits. 2(2):134.
  • Invest Auckland. 2023. New Zealand’s ecosystem approach to agritech innovation. Invest Auckland.
  • Jabran K, Chauhan BS. 2018. Chapter 1 - overview and significance of non-chemical weed control. In: Jabran K, Chauhan BS, editors. Non-Chemical Weed Control. Academic Press; p. 1–8.
  • James TK, Rahman A, Mellsop JM. 2000. Weed competition in maize crop under different timings for post-emergence weed control. New Zealand Plant Protection. 53:269–272. doi:10.30843/nzpp.2000.53.3706.
  • Johnson DW, Krall JM, Delaney RH, Pochop LO. 1989. Response of monocot and dicot weed species to fresnel lens concentrated solar radiation. Weed Science. 37(6):797. doi:10.1017/S0043174500072866.
  • Judaev IV, Brenina TP. 2008. The definition of electro impulses used in weed control. Journal of Agricultural Sciences, Belgrade. 51.
  • Jun I, Feng Z, Avanasi R, Brain RA, Prosperi M, Bian J. 2023. Evaluating the perceptions of pesticide use, safety, and regulation and identifying common pesticide-related topics on Twitter. Integrated Environmental Assessment and Management. 00.
  • Kacan K, Cakir E, Aygun I. 2018. Determination of possibilities of microwave application for weed control. International Journal of Agriculture and Biology. 20(5):966–974.
  • Kaierle S, Marx C, Rath T, Hustedt M. 2013. Find and irradiate - lasers used for weed control. Laser Technik Journal. 10(3):44–47. doi:10.1002/latj.201390038.
  • Kaufman KR, Schaffner LW. 1980. Energy requirements and economic analysis of electrical weed control. 72-85 p.
  • Kaufman KR, Schaffner LW. 1982. Energy and economics of electrical weed control. Transactions of the ASAE. 25(2):297–0300. doi:10.13031/2013.33523.
  • Keller M, Gantoli G, Mohring J, Gutjahr C, Gerhards R, Rueda-Ayala V. 2014. Integrating economics in the critical period for weed control concept in corn. Weed Science Society of America. 62:608–618. doi:10.1614/WS-D-13-00184.1.
  • Khalilov RI, Akhmedov IS. 1992. Ultra-violet induced changes of the plant cell membrance potential. Soviet Plant Physiology. 39(1):7–11.
  • Kitchin T. 2021. 28 Jan 2023 16:48 Agriculturists demand pathway to get through labour shortage. RNZ News.
  • Knezevic SZ, Datta A. 2017. The critical period for weed control: revisiting data analysis. Weed Science. 63(SP1):188–202. doi:10.1614/WS-D-14-00035.1.
  • Knezevic SZ, Fennimore SA, Datta A. 2016. Thermal weed control. p. 463-468.
  • Koch S, Epp A, Lohmann M, Bol GF. 2017. Pesticide residues in food: attitudes, beliefs, and misconceptions among conventional and organic consumers. Journal of Food Protection. 80(12):2083–2089. doi:10.4315/0362-028X.JFP-17-104.
  • Koerhuis R. 2022. Concentrated light to weed better than other technologies. Doetinchem: Future Farming.
  • Korres NE, Burgos NR, Travlos I, Vurro M, Gitsopoulos TK, Varanasi VK, Duke SO, Kudsk P, Brabham C, Rouse CE, Salas-Perez R. 2019. New directions for integrated weed management: modern technologies, tools and knowledge discovery. Advances in Agronomy. 155:243–319. doi:10.1016/bs.agron.2019.01.006.
  • Kumari A, Gamble A, Li S, Price AJ, Korres NE. 2023. Influence of a cereal rye cover crop on the critical period for weed control in soybean. Weed Technology. doi:10.1017/wet.2022.100.
  • LaCanne CE, Lundgren JG. 2018. Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ. 6:e4428. doi:10.7717/peerj.4428.
  • Laguë C, Khelifi M. 2001. Energy use and time requirements for different weeding strategies in grain corn. Canadian Biosystems Engineering / Le Genie des biosystems au Canada. 43:213–221.
  • Lamichhane JR, Devos Y, Beckie HJ, Owen MDK, Tillie P, Messéan A, Kudsk P. 2017. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad. Critical Reviews in Biotechnology. 37(4):459–475. doi:10.1080/07388551.2016.1180588.
  • Lati RN, Rosenfeld L, David IB, Bechar A. 2021. Power on! low-energy electrophysical treatment is an effective new weed control approach. Pest Management Science. doi:10.1002/ps.6451.
  • Leach H. 2005. Gardens without weeds? Pre-European Maori gardens and inadvertent introductions. New Zealand Journal of Botany. 43(1):271–284. doi:10.1080/0028825X.2005.9512954.
  • Lehnhoff EA, Neher P, Indacochea A, Beck L. 2022. Electricity as an effective weed control tool in non-crop areas. Weed Research. doi:10.1111/wre.12523.
  • Li Y, Al-Sarayreh M, Irie K, Hackell D, Bourdot G, Reis MM, Ghamkhar K. 2021. Identification of weeds based on hyperspectral imaging and machine learning. Frontiers in Plant Science. 11:611622. doi:10.3389/fpls.2020.611622.
  • Lottes P, Behley J, Chebrolu N, Milioto A, Stachniss C. 2018. Joint stem detection and crop-weed classification for plant-specific treatment in precision farming. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). p. 8233-8238.
  • Lysakov AA, Masyutina GV, Rostova AT, Eliseeva AA, Lubentsov VF. 2021. Development of a weeding robot with tubular linear electric motors. IOP Conference Series: Earth and Environmental Science. 852(1):012063. doi:10.1088/1755-1315/852/1/012063.
  • Magnusson MK, Arvola A, Hursti U-KK, Åberg L, Sjödén P-O. 2003. Choice of organic foods is related to perceived consequences for human health and to environmentally friendly behaviour. Appetite. 40(2):109–117. doi:10.1016/S0195-6663(03)00002-3.
  • Malewar A. 2021. New agricultural robots kill individual weeds with electricity. Retrieved 3-08-2022, updated JUNE 11, 2021 18:23 IST: https://www.inceptivemind.com/small-robot-company-tom-dick-kill-individual-weeds-electricity/19481/.
  • Martelloni L, Frasconi C, Sportelli M, Fontanelli M, Raffaelli M, Peruzzi A. 2021. Hot foam and hot water for weed control: a comparison. Journal of Agricultural Engineering. 52(3):1–10. doi:10.4081/jae.2021.1167.
  • Matthews JM, Llewellyn R, Powles S, Reeves T. 1996. Integrated weed management for the control of herbicide resistant annual ryegrass. In: Michalk DL, Pratley JE, editors. Agronomy - science with its sleeves rolled up. Proceedings of the 8th Australian Agronomy Conference. Toowoomba, Queensland, Australia; p. 417–420.
  • McCain Foods. 2023. McCain's regenerative agriculture framework. McCain Foods.
  • McCool C, Beattie J, Firn J, Lehnert C, Kulk J, Bawden O, Russell R, Perez T. 2018. Efficacy of mechanical weeding tools: a study into alternative weed management strategies enabled by robotics. IEEE Robotics and Automation Letters, Robotics and Automation Letters. 2:1184.
  • McErlich AF, Boydston RA. 2014. Current state of weed management in organic and conventional cropping systems. In: Young SL, Pierce FJ, editors. Automation: the future of weed control in cropping systems. Dordrecht: Springer Netherlands; p. 11–32.
  • Melander B, Liebman M, Davis AS, Gallandt ER, Bàrberi P, Moonen A-C, Rasmussen J, van der Weide R, Vidotto F. 2017. Non-chemical weed management. In: Hatcher PE, Froud-Williams RJ, editors. Weed research. Chichester, UK: John Wiley & Sons Ltd; p. 245–270.
  • Melander B, Munier-Jolain N, Charles R, Wirth J, Schwarz J, van der Weide R, Bonin L, Jensen PK, Kudsk P. 2013. European perspectives on the adoption of nonchemical weed management in reduced-tillage systems for arable crops. Weed Technology. 27(1):231–240. doi:10.1614/WT-D-12-00066.1.
  • Merfield CN. 2016a. Back to the future - electrothermal, systemic, weedkiller. Retrieved 7 April 2019 2019, from https://www.bhu.org.nz/future-farming-centre/information/bulletin/2016-v1/back-to-the-future-electrothermal-systemic-weedkiller.
  • Merfield CN. 2016b. Robotic weeding's false dawn? ten requirements for fully autonomous mechanical weed management. Weed Research. 56(5):340–344. doi:10.1111/wre.12217.
  • Merfield CN. 2018. Integrated weed management in organic farming. In: Sarath C, Unni MR, Sabu T, editors. Organic farming: global perspectives and methods. Oxford: Woodhead Publishing; p. 117–180.
  • Merfield CN. 2022. Redefining weeds for the post-herbicide era. Weed Research. 62(4):263–267. doi:10.1111/wre.12544.
  • Ministry for Business Innovation and Employment.. 2020. Agritech industry transformation plan. 50 p.
  • Ministry for Business Innovation and Employment. 2023. Labour productivity growth since 2000 (2019). Sector situation and performance, Ministry for Business Innovation and Employment.
  • Ministry for Primary Industries. 2022. Regenerating aotearoa: investigating the impacts of regenerative farming practices ISBN: 978-1-99-105209-4.
  • Mizuno A, Hori Y. 1988. Destruction of living cells by pulsed high-voltage application. IEEE Transactions on Industry Applications. 24(3):387–394. doi:10.1109/28.2886.
  • Mizuno A, Nagura A, Miyamoto T, Chakrabarti A, Sato T, Kimura K, Kimura T, Kobayashi M. 1993. A portable weed control device using high frequency AC voltage. IEEE Industry Applications. Toronto, ON, IEEE. p. 2000-2003.
  • Mizuno A, Tenma T, Yamano N. 1990. Destruction of weeds by pulsed high voltage discharges. Record of the 1990 IEEE Industry Applications Society Annual Meeting. Seattle, WA, IEEE. p. 720-727.
  • Moretti ML. 2021. Managing herbicide resistance with electric weed control. Retrieved 19 March 2023 https://smallgrains.wsu.edu/weeders-of-the-west/2021/03/11/managing-herbicide-resistance-with-electric-weed-control/.
  • Moss SR. 2008. Weed research: is it delivering what it should? Weed Research. 48(5):389–393. doi:10.1111/j.1365-3180.2008.00655.x.
  • Moss SR. 2017. Herbicide resistance in weeds. In: Hatcher PE, Froud-Williams RJ, editors. Weed research. Hoboken, NJ: John Wiley & Sons Ltd; p. 181–214.
  • Murphy S. 2022. ‘Unviable to grow produce’ in NZ: farmers blame rising cost of energy, rates, wages and audits. Retrieved 1 March 2023 https://www.rnz.co.nz/news/country/463086/unviable-to-grow-produce-in-nz-farmers-blame-rising-cost-of-energy-rates-wages-audits.
  • New Zealand Plant Protection Society.. 2019. Herbicide resitance in New Zealand. Retrieved 20 August 2019 http://resistance.nzpps.org/index.php?p=herbicides/introduction.
  • Ngow Z, Chynoweth RJ, Gunnarsson M, Rolston P, Buddenhagen CE. 2020. A herbicide resistance risk assessment for weeds in wheat and barley crops in New Zealand. PloS one. 15(6):e0234771. doi:10.1371/journal.pone.0234771.
  • Nørremark M, Sørensen CG, Jorgensen RN. 2006. HortiBot: comparison of present and future phytotechnologies for weed control – part III. Portland, Oregon: ASABE.
  • Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM, Bradley KW, Frisvold G, Powles SB, Burgos NR, Witt WW. 2012. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Science. 60:31. doi:10.1614/WS-D-11-00155.1.
  • No-Till Farmer. 2022. UK's RootWave electro-weeder succeeds in independent trials. Retrieved Mar 20, 2023, updated September 13, 2022: https://www.no-tillfarmer.com/articles/11882-uks-rootwave-electro-weeder-succeeds-in-independent-trials.
  • Oerke EC. 2006. Crop losses to pests. The Journal of Agricultural Science. 144(1):31–43. doi:10.1017/S0021859605005708.
  • Oldfield EE, Bradford MA, Augarten AJ, Cooley ET, Radatz AM, Radatz T, Ruark MD. 2022. Positive associations of soil organic matter and crop yields across a regional network of working farms. Soil Science Society of America Journal. 86(2):384–397. doi:10.1002/saj2.20349.
  • Oliveira LF, Moreira AP, Silva MF. 2021. Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics. 10(2):52. doi:10.3390/robotics10020052.
  • Opp FW, Opp WH. 1952. Electric weed-killing apparatus. USA patent 2,591,597.
  • Owen MJ, Martinez NJ, Powles SB. 2014. Multiple herbicide-resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Research. 54(3):314–324. doi:10.1111/wre.12068.
  • Panescu D, Nerheim M, Kroll MW, Brave MA. 2017. New conducted electrical weapons: electrical safety relative to relevant standards. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). p. 2185-2190.
  • Papadopoulos L. 2023. AI-powered robots cut out weeds while leaving crops untouched. Interesting Engineering.
  • Pardell R. 2021. CLAWS Concentrated light autonomous weeding and scouting. FIRA Forum. p. https://www.youtube.com/watch?v=dJbV4snVCVY.
  • Parish S. 1990. A review of non-chemical weed control techniques. Biological Agriculture & Horticulture. 7:117–137. doi:10.1080/01448765.1990.9754540.
  • Peden R. 2008. Farm Fencing, updated 24 November 2008: https://teara.govt.nz/en/farm-fencing/print.
  • Peltzer S. 2019. Herbicide resistance. Retrieved 9 September 2019 https://www.agric.wa.gov.au/grains-research-development/herbicide-resistance.
  • Perez-Ruiz M, Brenes R, Rodríguez-Lizana A, Urbano JM, Slaughter DC, Forcella F. 2018. Agricultural residues are efficient abrasive tools for weed control. Agronomy for Sustainable Development. 38(18). doi:10.1007/s13593-018-0494-6.
  • Peruzzi A, Martelloni L, Frasconi C, Fontanelli M, Pirchio M, Raffaelli M. 2017. Machines for non-chemical intra-row weed control in narrow and wide-row crops: a review. Journal of Agricultural Engineering Research. 48(583):57–70. doi:10.4081/jae.2017.583.
  • Petrovic K. 2020. The next frontier of weeding robots. Retrieved 15 March 2023 https://www.agricultural-robotics.com/news/the-next-frontier-of-weeding-robots.
  • Petrovic K. 2022. Meet ROBOTTI, the do-it-all farm robot. Retrieved 15 March 2023 https://www.agricultural-robotics.com/news/meet-robotti-the-do-it-all-farm-robot.
  • Pluenneke RH, Dykes WG. Lasco Inc, 1975. Method and apparatus for using electrical current to destroy grasses and weeds. U.S. Patent 3,919,806.
  • Powles S. 2014. Global herbicide resistance challenge. Pest Management Science. 70(9):1305–1305. doi:10.1002/ps.3808.
  • Rahman A, James TK, Mortimer J. 1983. Control of atrazine-resistant fathen in maize. Proceedings of the thirty-sixth New Zealand weed and pest control conference. Hastings, NZ, NZPPS. p. 229-232.
  • Rakhmatulin I, Andreasen C. 2020. A concept of a compact and inexpensive device for controlling weeds with laser beams. Agronomy. 10(10):1616. doi:10.3390/agronomy10101616.
  • Reiser D, Sehsah ES, Bumann O, Morhard J, Griepentrog HW. 2019. Development of an autonomous electric robot implement for intra-row weeding in vineyards. Agriculture (Switzerland). 9(18): doi:10.3390/agriculture9010018.
  • Rispens C. 2022. Ekobot: New autonomous weeding experience. Retrieved 15 March 2023 https://www.agricultural-robotics.com/news/ekobot-new-autonomous-weeding-experience.
  • Rona SA, Valverde B, Mendes de Souza DT, de Andrade Coutinho Filho S, Zasso Group AG. 6340. Baar (CH), assignee 2019. Weed inactivation device patent EP19152341.4A.
  • Rootwave. 2019. RootWave working with small robot company to create a weed zapping autonomous robot. Retrieved 02 Aug 2021, updated 5 December 2019: https://rootwave.com/rootwave-working-with-small-robot-company-to-create-a-weed-zapping-autonomous-robot/.
  • Ross DJ. 1995. Herbicide mode-of-action summary.
  • Ruigrok T, van Henten E, Booij J, van Boheemen K, Kootstra G. 2020. Application-specific evaluation of a weed-detection algorithm for plant-specific spraying. Sensors. 20(24):7262. doi:10.3390/s20247262.
  • Rutledge MP. 2009. Assessing demand for organic lamb using choice modelling. Unpublished Master of Commerce thesis, Lincoln University.
  • Sabzi S, Abbaspour-Gilandeh Y, García-Mateos G. 2018. A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Computers in Industry. 98:80–89. doi:10.1016/j.compind.2018.03.001.
  • Saile M, Spaeth M, Gerhards R. 2022. Evaluating sensor-based mechanical weeding combined with pre- and post-emergence herbicides for integrated weed management in cereals. Agronomy. 12(6):1465. doi:10.3390/agronomy12061465.
  • Salminen J, Eriksson I, Haimi J. 1996. Effects of sensor-based mechanical weeding combined with pre- and post-emergence herbicides for integrated weed management in cereals terbuthylazine on soil fauna and decomposition processes. Ecotoxicology and Environmental Safety. 34(2):184–189. doi:10.1006/eesa.1996.0062.
  • Sartorato I, Zanin G, Baldoin C, De Zanche C. 2006. Observations on the potential of microwaves for weed control. Weed Research. 46(1):1–9. doi:10.1111/j.1365-3180.2006.00484.x.
  • Saunders JT, Greer G, Bourdôt G, Saunders C, James T, Rolando C, Monge J, Watt MS. 2017. The economic costs of weeds on productive land in New Zealand. International Journal of Agricultural Sustainability. 15(4):380–392. doi:10.1080/14735903.2017.1334179.
  • Scheible A. 1895. Apparatus for exterminating vegetation. United States of America patent 546,682.
  • Schlesinger WH. 2022. Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry. 161(1):9–17. doi:10.1007/s10533-022-00942-8.
  • Schneider D. 2020. The electric weed-zapper renaissance - IEEE Spectrum.
  • Sharp AA. 1893. Vegetation exterminator. United States of America patent 492,635.
  • Silverberg D. 2023. Lasers, drones and AI: the future of weeding. BBC News.
  • Slaughter DC, Giles DK, Downey D. 2008. Autonomous robotic weed control systems: a review. Computers and Electronics in Agriculture. 61(1):63–78. doi:10.1016/j.compag.2007.05.008.
  • Slesarev VN, Gubanova NY, Nechaev BV. 1970. Control of weeds with an electric current. Mekhanizatsiya i Elektrifikatsiya Sotsialisti-cheskogo Sel'skogo Khozyaistva. 12:45–6.
  • Standards Australia/Standards New Zealand. 2022. Effects of current on human beings and livestock Pat 1: general aspects. 1 Scope. Wellington, NZ, Standards Australia/Standards New Zealand.
  • Statistics New Zealand. 2023. Table A - recruiting difficulty by industry (Annual-Aug). Infoshare. 25 March 2022 10:45am ed. Wellington, NZ, Statistics New Zealand. p. https://infoshare.stats.govt.nz/SelectVariables.aspx?pxID=f9823c56-943d-4b8e-ab4b-dd612bb7320f.
  • Stringleman H, Peden R. 2015. Sheep farming. Retrieved 15 Mar 2023, updated 1 Mar 2015: https://teara.govt.nz/en/sheep-farming/print.
  • SwarmFarm Robotics. 2023. Unlock integrated agronomy. Retrieved 21 March 2023 https://www.swarmfarm.com/.
  • Thomas S. 2022. Regenerative agriculture doesn't have to be contentious. Upstream Ag Insights, Upstream Ag Insights.
  • Tillett ND, Hague T, Miles SJ. 2002. Inter-row vision guidance for mechanical weed control in sugar beet. Computers and Electronics in Agriculture. 33(3):163–177. doi:10.1016/S0168-1699(02)00005-4.
  • Tørresen KS, Karlsson LM, Gonzalez-Andujar JL. 2017. Seed biology and population dynamics. Weed Research. 85–113. doi:10.1002/9781119380702.ch4.
  • Verdant Robotics. 2022. Agriculture's most flexible farm tool. Retrieved 6 April 2022 https://www.verdantrobotics.com/technology.
  • Vigneault C, Benoit DL. 2001. Electrical weed control: theory and applications. In: Vincent C, Panneton B, Fleurat-Lessard F, editors. Physical Control Methods in Plant Protection. Berlin Heidelberg: Springer Science & Business Media.
  • Vigneault C, Benoit DL, McLaughlin NB. 1990. Energy aspects of weed electrocution. Reviews of Weed Science. 5:15–26.
  • Vleeshouwers LM, Kropff MJ. 2000. Modelling field emergence patterns in arable weeds. The New Phytologist. 148(3):445–457. doi:10.1046/j.1469-8137.2000.00773.x.
  • Walsh MJ, Powles SB. 2014. Management of herbicide resistance in wheat cropping systems: learning from the Australian experience. Pest Management Science. 70(9):1324–1328. doi:10.1002/ps.3704.
  • Wang A, Zhang W, Wei X. 2019. A review on weed detection using ground-based machine vision and image processing techniques. Computers and Electronics in Agriculture. 158:226–240. doi:10.1016/j.compag.2019.02.005.
  • Ward J. 2023. AI meets agriculture with new farm machines to kill weeds and harvest crops. In: NBC ed. Nightly News. USA. p. https://www.nbcnews.com/nightly-news/video/ai-meets-agriculture-with-new-farm-machines-to-kill-weeds-and-harvest-crops-180937797700.
  • Wayland J, Merkle M, Davis F, Menges RM, Robinson R. 1975. Control of weeds with UHF elecromagnetic fields. Weed Research. 15:1–5. doi:10.1111/j.1365-3180.1975.tb01088.x.
  • Welsh JP, Bulson HAJ, Stopes CE, Froud-Williams RJ, Murdoch AJ. 1999. The critical weed-free period in organically-grown winter wheat. Annals of Applied Biology. 134(3):315–320. doi:10.1111/j.1744-7348.1999.tb05270.x.
  • Westbrook AS, Bhaskar V, DiTommaso A. 2022. Weed control and community composition in living mulch systems. Weed Research. 62(1):12–23. doi:10.1111/wre.12511.
  • Whatley TL, Wayland JR, Davis FS, Merkle MG. 1973. Effects of soil moisture on phytotoxicity of microwave fields. Proceedings 26th Annual Meeting Southern Weed Science Society, 389-389.
  • William WD. 2007. Control of both winter annual and summer annual weeds in no-till corn with between-row mowing systems. Weed Technology. 21(3):591. doi:10.1614/WT-05-141.1.
  • Wilson RG, Young BG, Matthews JL, Weller SC, Johnson WG, Jordan DL, Owen MDK, Dixon PM, Shaw DR. 2011. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 4: weed management practices and effects on weed populations and soil seedbanks. Pest Management Science. 67:771–780. doi:10.1002/ps.2176.
  • Wöltjen C, Haferkamp H, Rath T, Herzog D. 2008. Plant growth depression by selective irradiation of the meristem with CO2 and diode lasers. Biosystems Engineering. 101(3):316–324. doi:10.1016/j.biosystemseng.2008.08.006.
  • Wooliscroft B, Ganglmair-Wooliscroft A, Noone A. 2014. The hierarchy of ethical consumption behavior: the case of New Zealand. Journal of Macromarketing. 34(1):57–72. doi:10.1177/0276146713508560.
  • Wortman SE, Forcella F, Humburg D, Clay SA. 2018. Abrasive weeding: a new tool for weed management in organic agriculture. https://articles.extension.org/pages/74528/abrasive-weeding:-a-new-tool-for-weed-management-in-organic-agriculture, eXtension.org.
  • Wu X, Aravecchia S, Lottes P, Stachniss C, Pradalier C. 2020. Robotic weed control using automated weed and crop classification. Journal of Field Robotics. 37(1). doi:10.1002/rob.21938.
  • Xiong Y, Ge YY, Liang YL, Blackmore S. 2017. Development of a prototype robot and fast path-planning algorithm for static laser weeding. Computers and Electronics in Agriculture. 142:494–503. doi:10.1016/j.compag.2017.11.023.
  • Young SL, Pitla SK, Van Evert FK, Schueller JK, Pierce FJ, Liebman M. 2017. Moving integrated weed management from low level to a truly integrated and highly specific weed management system using advanced technologies. Weed Research. 57(1):1–5. doi:10.1111/wre.12234.
  • Yudaev IV, Daus Y, Kokurin R, Prokofyev PV, Gamaga V, Armenyanov N. 2019. Electro-impulse irreversible plant tissue damage as highly efficient agricultural technology. Advanced Agro-Engineering Technologies for Rural Business Development. Hershey, PA, USA, IGI Global. p. 396-430.
  • Zimdahl RL. 1995. Weed science in sustainable agriculture. American Journal of Alternative Agriculture. 10(3):138–142. doi:10.1017/S0889189300006329.