438
Views
2
CrossRef citations to date
0
Altmetric
Articles

Constructing a Simulation Surrogate with Partially Observed Output

ORCID Icon, & ORCID Icon
Pages 1-13 | Received 10 Dec 2021, Accepted 27 Apr 2023, Published online: 22 Jun 2023

References

  • Altman, N. S. (1992), “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression,” The American Statistician, 46, 175–185. DOI: 10.2307/2685209.
  • Baker, E., Barbillon, P., Fadikar, A., Gramacy, R. B., Herbei, R., Higdon, D., Huang, J., Johnson, L. R., Ma, P., Mondal, A., et al. (2022), “Analyzing Stochastic Computer Models: A Review with Opportunities,” Statistical Science, 37, 64–89. DOI: 10.1214/21-STS822.
  • Bayarri, M. J., Berger, J. O., Kennedy, M. C., Kottas, A., Paulo, R., Sacks, J., Cafeo, J. A., Lin, C.-H., and Tu, J. (2009), “Predicting Vehicle Crashworthiness: Validation of Computer Models for Functional and Hierarchical Data,” Journal of the American Statistical Association, 104, 929–943. DOI: 10.1198/jasa.2009.ap06623.
  • Bayarri, M. J., Walsh, D., Berger, J. O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R. J., Paulo, R., and Sacks, J. (2007), “Computer Model Validation with Functional Output,” The Annals of Statistics, 35, 1874–1906. DOI: 10.1214/009053607000000163.
  • Bollapragada, R., Menickelly, M., Nazarewicz, W., O’Neal, J., Reinhard, P.-G., and Wild, S. M. (2021), “Optimization and Supervised Machine Learning Methods for Fitting Numerical Physics Models without Derivatives,” Journal of Physics G: Nuclear and Particle Physics, 48, 024001. DOI: 10.1088/1361-6471/abd009.
  • Brynjarsdóttir, J. and O’Hagan, A. (2014), “Learning about Physical Parameters: The Importance of Model Discrepancy,” Inverse Problems, 30, 114007. DOI: 10.1088/0266-5611/30/11/114007.
  • Chan, M. Y., Plumlee, M., and Wild, S. M. (2023), “Supplementary Material to ‘Constructing a Simulation Surrogate with Partially-Observed Output’,”.
  • Chang, W., Haran, M., Olson, R., and Keller, K. (2014), “Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation,” The Annals of Applied Statistics, 8, 649–673. DOI: 10.1214/14-AOAS733.
  • Chevalier, C., and Ginsbourger, D. (2013), “Fast Computation of the Multi-Points Expected Improvement with Applications in Batch Selection,” in Lecture Notes in Computer Science, eds. G. Nicosia, and P. Pardalos, pp. 59–69, Heidelberg: Springer Berlin.
  • Conti, S., and O’Hagan, A. (2010), “Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models,” Journal of Statistical Planning and Inference, 140, 640–651. DOI: 10.1016/j.jspi.2009.08.006.
  • Dobaczewski, J., Nazarewicz, W., and Reinhard, P.-G. (2014), “Error Estimates of Theoretical Models: A Guide,” Journal of Physics G: Nuclear and Particle Physics, 41, 074001. DOI: 10.1088/0954-3899/41/7/074001.
  • Dobaczewski, J., and Olbratowski, P. (2005), “Solution of the Skyrme-Hartree-Fock-Bogolyubov Equations in the Cartesian Deformed Harmonic-Oscillator Basis. (V) HFODD (v2.08k),” Computer Physics Communications, 167, 214–216. DOI: 10.1016/j.cpc.2005.01.014.
  • Fayans, S. (1998), “Towards a Universal Nuclear Density Functional,” Journal of Experimental and Theoretical Physics Letters, 68, 169–174. DOI: 10.1134/1.567841.
  • Fayans, S., Tolokonnikov, S., Trykov, E., and Zawischa, D. (2000), “Nuclear Isotope Shifts Within the Local Energy-Density Functional Approach,” Nuclear Physics A, 676, 49–119. DOI: 10.1016/S0375-9474(00)00192-5.
  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013), Bayesian Data Analysis, Boca Raton: CRC Press.
  • Geyer, C. J. (1991), “Markov Chain Monte Carlo Maximum Likelihood,” in Computing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, pp. 156–163.
  • GPy (since 2012), “GPy: A Gaussian process framework in python,” available at http://github.com/SheffieldML/GPy.
  • Gramacy, R. B. (2020), Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences, New York: CRC Press.
  • Gramacy, R. B., Bingham, D., Holloway, J. P., Grosskopf, M. J., Kuranz, C. C., Rutter, E., Trantham, M., and Drake, R. P. (2015), “Calibrating a Large Computer Experiment Simulating Radiative Shock Hydrodynamics,” The Annals of Applied Statistics, 9, 1141–1168. DOI: 10.1214/15-AOAS850.
  • Gu, M., and Berger, J. O. (2016), “Parallel Partial Gaussian Process Emulation for Computer Models with Massive Output,” The Annals of Applied Statistics, 10, 1317–1347. DOI: 10.1214/16-AOAS934.
  • Gu, M., and Xu, Y. (2020), “Fast Nonseparable Gaussian Stochastic Process with Application to Methylation Level Interpolation,” Journal of Computational and Graphical Statistics, 29, 250–260. DOI: 10.1080/10618600.2019.1665534.
  • Guillas, S., Sarri, A., Day, S., Liu, X., and Dias, F. (2018), “Functional Emulation of High Resolution Tsunami Modelling over Cascadia,” Annals of Applied Statistics, 12, 2023–2053.
  • Handcock, M. S., and Stein, M. L. (1993), “A Bayesian Analysis of Kriging,” Technometrics, 35, 403–410. DOI: 10.1080/00401706.1993.10485354.
  • Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008), “Computer Model Calibration Using High-Dimensional Output,” Journal of the American Statistical Association, 103, 570–583. DOI: 10.1198/016214507000000888.
  • Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., and Ryne, R. D. (2004), “Combining Field Data and Computer Simulations for Calibration and Pediction,” SIAM Journal on Scientific Computing, 26, 448–466. DOI: 10.1137/S1064827503426693.
  • Higdon, D., McDonnell, J. D., Schunck, N., Sarich, J., and Wild, S. M. (2015), “A Bayesian Approach for Parameter Estimation and Prediction Using a Computationally Intensive Model,” Journal of Physics G: Nuclear and Particle Physics, 42, 034009. DOI: 10.1088/0954-3899/42/3/034009.
  • Huang, J., Gramacy, R. B., Binois, M., and Libraschi, M. (2020), “On-Site Surrogates for Large-Scale Calibration,” Applied Stochastic Models in Business and Industry, 36, 283–304. DOI: 10.1002/asmb.2523.
  • Hung, Y., Joseph, V. R., and Melkote, S. N. (2015), “Analysis of Computer Experiments with Functional Response,” Technometrics, 57, 35–44. DOI: 10.1080/00401706.2013.869263.
  • Joseph, V. R., Gul, E., and Ba, S. (2015), “Maximum Projection Designs for Computer Experiments,” Biometrika, 102, 371–380. DOI: 10.1093/biomet/asv002.
  • Kennedy, M. C., and O’Hagan, A. (2001), “Bayesian Calibration of Computer Models,” Journal of the Royal Statistical Society, Series B, 63, 425–464. DOI: 10.1111/1467-9868.00294.
  • Kortelainen, M., Lesinski, T., Moré, J. J., Nazarewicz, W., Sarich, J., Schunck, N., Stoitsov, M. V., and Wild, S. M. (2010), “Nuclear Energy Density Optimization,” Physical Review C, 82, 024313. DOI: 10.1103/PhysRevC.82.024313.
  • Kortelainen, M., McDonnell, J. D., Nazarewicz, W., Olsen, E., Reinhard, P.-G., Sarich, J., Schunck, N., Wild, S. M., Davesne, D., Erler, J., and Pastore, A. (2014), “Nuclear Energy Density Optimization: Shell Structure,” Physical Review C, 89, 054314. DOI: 10.1103/PhysRevC.89.054314.
  • Kortelainen, M., McDonnell, J. D., Nazarewicz, W., Reinhard, P.-G., Sarich, J., Schunck, N., Stoitsov, M. V., and Wild, S. M. (2012), “Nuclear Energy Density Optimization: Large Deformations,” Physical Review C, 85, 024304. DOI: 10.1103/PhysRevC.85.024304.
  • Kyprioti, A. P., Taflanidis, A. A., Plumlee, M., Asher, T. G., Spiller, E., Luettich, R. A., Blanton, B., Kijewski-Correa, T. L., Kennedy, A., and Schmied, L. (2021), “Improvements in Storm Surge Surrogate Modeling for Synthetic Storm Parameterization, Node Condition Classification and Implementation to Small Size Databases,” Natural Hazards, 109, 1349–1386. DOI: 10.1007/s11069-021-04881-9.
  • Lawrence, E., Heitmann, K., Kwan, J., Upadhye, A., Bingham, D., Habib, S., Higdon, D., Pope, A., Finkel, H., and Frontiere, N. (2017), “The Mira-Titan Universe. II. Matter Power Spectrum Emulation,” The Astrophysical Journal, 847, 50. DOI: 10.3847/1538-4357/aa86a9.
  • Lin, L., Bingham, D., Broekgaarden, F., and Mandel, I. (2021), “Uncertainty Quantification of a Computer Model for Binary Black Hole Formation,” The Annals of Applied Statistics, 15, 1604–1627. DOI: 10.1214/21-AOAS1484.
  • Ma, P., Mondal, A., Konomi, B. A., Hobbs, J., Song, J. J., and Kang, E. L. (2022), “Computer Model Emulation with High-Dimensional Functional Output in Large-Scale Observing System Uncertainty Experiments,” Technometrics, 64, 65–79. DOI: 10.1080/00401706.2021.1895890.
  • Mak, S., and Joseph, V. R. (2018), “Support Points,” The Annals of Statistics, 46, 2562–2592. DOI: 10.1214/17-AOS1629.
  • Marque-Pucheu, S., Perrin, G., and Garnier, J. (2020), “An Efficient Dimension Reduction for the Gaussian Process Emulation of Two Nested Codes with Functional Outputs,” Computational Statistics, 35, 1059–1099. DOI: 10.1007/s00180-019-00926-7.
  • McDonnell, J., Schunck, N., Higdon, D., Sarich, J., Wild, S., and Nazarewicz, W. (2015), “Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements,” Physical Review Letters, 114, 122501. DOI: 10.1103/PhysRevLett.114.122501.
  • McKay, M., Beckman, R., and Conover, W. (1979), “A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code,” Technometrics, 21, 239–245. DOI: 10.2307/1268522.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011), “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, 12, 2825–2830.
  • Phillips, D. R., Furnstahl, R. J., Heinz, U., Maiti, T., Nazarewicz, W., Nunes, F. M., Plumlee, M., Pratola, M. T., Pratt, S., Viens, F. G., and Wild, S. M. (2021), “Get on the BAND Wagon: A Bayesian Framework for Quantifying Model Uncertainties in Nuclear Dynamics,” Journal of Physics G: Nuclear and Particle Physics, 48, 072001. DOI: 10.1088/1361-6471/abf1df.
  • Plumlee, M. (2017), “Bayesian Calibration of Inexact Computer Models,” Journal of the American Statistical Association, 112, 1274–1285. DOI: 10.1080/01621459.2016.1211016.
  • Plumlee, M., Asher, T. G., Chang, W., and Bilskie, M. V. (2021a), “High-Fidelity Hurricane Surge Forecasting Using Emulation and Sequential Experiments,” Annals of Applied Statistics, 15, 460–480.
  • Plumlee, M., Sürer, O., and Wild, S. M. (2021b), Surmise Users Manual.
  • Reinhard, P.-G., and Nazarewicz, W. (2017), “Toward a Global Description of Nuclear Charge Radii: Exploring the Fayans Energy Density Functional,” Physical Review C, 95, 064328. DOI: 10.1103/PhysRevC.95.064328.
  • Roberts, G. O., and Stramer, O. (2002), “Langevin Diffusions and Metropolis-Hastings Algorithms,” Methodology and Computing in Applied Probability, 4, 337–357. DOI: 10.1023/A:1023562417138.
  • Rougier, J. (2008), “Efficient Emulators for Multivariate Deterministic Functions,” Journal of Computational and Graphical Statistics, 17, 827–843. DOI: 10.1198/106186008X384032.
  • Roweis, S. (1997), “EM Algorithms for PCA and SPCA,” in Proceedings of the 10th International Conference on Neural Information Processing Systems, NeurIPS’97, pp. 626–632, MIT Press.
  • Salter, J. M., Williamson, D. B., Scinocca, J., and Kharin, V. (2019), “Uncertainty Quantification for Computer Models with Spatial Output Using Calibration-Optimal Bases,” Journal of the American Statistical Association, 114, 1800–1814. DOI: 10.1080/01621459.2018.1514306.
  • Santner, T. J., Williams, B. J., and Notz, W. I. (2018), The Design and Analysis of Computer Experiments, New York: Springer.
  • Tipping, M. E. (2001), “Sparse Bayesian Learning and the Relevance Vector Machine,” Journal of Machine Learning Research, 1, 211–244.
  • Tipping, M. E., and Bishop, C. M. (1999), “Probabilistic Principal Component Analysis,” Journal of the Royal Statistical Society, Series B, 61, 611–622. DOI: 10.1111/1467-9868.00196.
  • Tuo, R., and Wu, C. F. J. (2015), “Efficient Calibration for Imperfect Computer Models,” The Annals of Statistics, 43, 2331–2352. DOI: 10.1214/15-AOS1314.
  • Venkatramanan, S., Sadilek, A., Fadikar, A., Barrett, C. L., Biggerstaff, M., Chen, J., Dotiwalla, X., Eastham, P., Gipson, B., Higdon, D., Kucuktunc, O., Lieber, A., Lewis, B. L., Reynolds, Z., Vullikanti, A. K., Wang, L., and Marathe, M. (2021), “Forecasting Influenza Activity Using Machine-Learned Mobility Map,” Nature Communications, 12, 726. DOI: 10.1038/s41467-021-21018-5.
  • Williams, B., Higdon, D., Gattiker, J., Moore, L., McKay, M., Keller-McNulty, S., et al. (2006), “Combining Experimental Data and Computer Simulations, with an Application to Flyer Plate Experiments,” Bayesian Analysis, 1, 765–792. DOI: 10.1214/06-BA125.
  • Yu, Y., and Bulgac, A. (2003), “Energy Density Functional Approach to Superfluid Nuclei,” Physical Review Letters, 90, 222501. DOI: 10.1103/PhysRevLett.90.222501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.