59
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of imidacloprid induced genotoxicity in Pethia conchonius (Rosy barb), a common freshwater fish of India

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 101-114 | Received 20 Mar 2023, Accepted 23 May 2023, Published online: 16 Jun 2023

References

  • Acharjee, M.L., 2013. Diversity of plankton and ichthyofauna in relation to limnochemistry of river Teesta and Relli in the Darjeeling Himalaya of West Bengal. Doctoral dissertation. University of North Bengal.
  • Ade, C.M., Boone, M.D., and Puglis, H.J., 2010. Effects of an insecticide and potential predators on green frogs and northern cricket frogs. Journal of Herpetology, 44 (4), 591–600. doi: 10.1670/09-140.1.
  • Aktar, M.W., et al., 2009. Impact assessment of pesticide residues in fish of Ganga river around Kolkata in West Bengal. Environmental Monitoring and Assessment, 157 (1–4), 97–104. doi: 10.1007/s10661-008-0518-9.
  • Ali, D., et al., 2008. Genotoxicity assessment of acute exposure of chlorpyrifos to freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Chemosphere, 71 (10), 1823–1831. doi: 10.1016/j.chemosphere.2008.02.007.
  • Alimba, C.G., Ajiboye, R.D., and Fagbenro, O.S., 2017. Dietary ascorbic acid reduced micronucleus and nuclear abnormalities in Clarias gariepinus (Burchell 1822) exposed to hospital effluent. Fish Physiology and Biochemistry, 43 (5), 1325–1335. doi: 10.1007/s10695-017-0375-y.
  • Alvim, T.T., and dos Reis Martinez, C.B., 2019. Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 842, 85–93. doi: 10.1016/j.mrgentox.2018.11.011.
  • Anderson, J.C., Dubetz, C., and Palace, V.P., 2015. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. The Science of the Total Environment, 505, 409–422. doi: 10.1016/j.scitotenv.2014.09.090.
  • Azqueta, A., and Collins, A.R., 2013. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Archives of Toxicology, 87 (6), 949–968. doi: 10.1007/s00204-013-1070-0.
  • Baig, S.A., et al., 2012. Imidacloprid residues in vegetables, soil and water in the southern Punjab, Pakistan. Journal of Agricultural Technology, 8 (3), 903–916.
  • Bajpayee, M., et al., 2005. Comet assay responses in human lymphocytes are not influenced by the menstrual cycle: a study in healthy Indian females. Mutation Research, 565 (2), 163–172. doi: 10.1016/j.mrgentox.2004.10.008.
  • Begum, A., Harikrishna, S., and Irfanulla, K., 2009. A survey of persistant organochlorine pesticides residues in some streams of the Cauvery River, Karnataka, India. International Journal of ChemTech Research, 1 (2), 237–244.
  • Benincá, C., 2006. Biomonitoring of the Camacho-Jaguaruna (SC) and Santa Marta-Laguna (SC) estuarine lagoons, using Geophagus brasiliensis (Cichlidae). Master’s Dissertation. University of Paranà, Brazil.
  • Benton, E.P., et al., 2016. Consequences of imidacloprid treatments for hemlock woolly adelgid on stream water quality in the southern Appalachians. Forest Ecology and Management, 360, 152–158. doi: 10.1016/j.foreco.2015.10.028.
  • Berheim, E.H., et al., 2019. Effects of neonicotinoid insecticides on physiology and reproductive characteristics of captive female and fawn white-tailed deer. Scientific Reports, 9 (1), 4534. doi: 10.1038/s41598-019-40994-9.
  • Bhattacharya, H., Lun, L., and Gomez, R.G.D., 2005. Biochemical effects to toxicity of CCl 4 on rosy barbs (Puntius conchonius). Our Nature, 3 (1), 20–25. doi: 10.3126/on.v3i1.330.
  • Bianchi, J., Cabral-de-Mello, D.C., and Marin-Morales, M.A., 2015. Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium. Ecotoxicology and Environmental Safety, 120, 174–183. doi: 10.1016/j.ecoenv.2015.05.040.
  • Bolognesi, C., et al., 2006. Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquatic Toxicology, 78, S93–S98. doi: 10.1016/j.aquatox.2006.02.015.
  • Buschini, A., et al., 2003. Effects of temperature on baseline and genotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha. Mutation Research, 537 (1), 81–92. doi: 10.1016/S1383-5718(03)00050-0.
  • Carvalho, M., Lozano, M.A., and Serra, L.M., 2012. Multicriteria synthesis of trigeneration systems considering economic and environmental aspects. Applied Energy, 91 (1), 245–254. doi: 10.1016/j.apenergy.2011.09.029.
  • Chakraborty, P., et al., 2016. Polychlorinated biphenyls and organochlorine pesticides in River Brahmaputra from the outer Himalayan Range and River Hooghly emptying into the Bay of Bengal: Occurrence, sources and ecotoxicological risk assessment. Environmental Pollution (Barking, Essex : 1987), 219, 998–1006. doi: 10.1016/j.envpol.2016.06.067.
  • Chaudhuri, S., and Chaudhuri, U., 2015. And the teesta flows. Delhi, India: Niyogi Books.
  • Cotelle, S., and Férard, J.F., 1999. Comet assay in genetic ecotoxicology: a review. Environmental and Molecular Mutagenesis, 34 (4), 246–255. doi: 10.1002/(SICI)1098-2280(1999)34:4<246::AID-EM4>3.0.CO;2-V.
  • Crisp, T.M., et al., 1998. Environmental endocrine disruption: an effects assessment and analysis. Environmental Health Perspectives, 106 (1), 11–56. doi: 10.2307/3433911.
  • Dahanukar, N., 2015. Pethia conchonius. The IUCN Red List of Threatened Species 2015. doi: 10.2305/IUCN.UK.2015-1.RLTS.T166646A70081880.en.
  • Ding, Z., et al., 2004. Acute toxicity and bio-concentration factor of three pesticides on Brachydanio rerio. Ying Yong Sheng tai xue bao = the Journal of Applied Ecology, 15 (5), 888–890.
  • Du Sert, N.P., et al., 2020. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biology, 18 (7), 3000411.
  • Dutta, S., and Bahadur, M., 2016. Cytogenetic analysis of micronuclei and cell death parameters in epithelial cells of pesticide exposed tea garden workers. Toxicology Mechanisms and Methods, 26 (8), 627–634. doi: 10.1080/15376516.2016.1230917.
  • Dutta, S., and Bahadur, M., 2019. Comet assay genotoxicity evaluation of occupationally exposed tea-garden workers in northern West Bengal, India. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 844, 1–9. doi: 10.1016/j.mrgentox.2019.06.005.
  • Eastman, A., and Barry, M.A., 1992. The origins of DNA breaks: a consequence of DNA damage, DNA repair or apoptosis? Cancer Investigation, 10 (3), 229–240. doi: 10.3109/07357909209032765.
  • Eskenazi, B., et al., 2008. Pesticide toxicity and the developing brain. Basic & Clinical Pharmacology & Toxicology, 102 (2), 228–236. doi: 10.1111/j.1742-7843.2007.00171.x.
  • Fenech, M., and Crott, J.W., 2002. Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes—evidence for breakage–fusion-bridge cycles in the cytokinesis-block micronucleus assay. Mutation Research, 504 (1–2), 131–136. doi: 10.1016/s0027-5107(02)00086-6.
  • Feng, S., et al., 2004. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell. Chemosphere, 56 (5), 457–463. doi: 10.1016/j.chemosphere.2004.02.010.
  • Finney, D. J., 1971. Probit analysis. 3rd ed. London, UK: Cambridge University Press, 333.
  • Ge, W., et al., 2015. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). Journal of Agricultural and Food Chemistry, 63 (6), 1856–1862. doi: 10.1021/jf504895h.
  • Godfray, H.C.J., et al., 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 281 (1786), 20140558. doi: 10.1098/rspb.2014.0558.
  • Guo, J., et al., 2020. Genotoxic effects of imidacloprid in human lymphoblastoid TK6 cells. Drug and Chemical Toxicology, 43 (2), 208–212. doi: 10.1080/01480545.2018.1497048.
  • Hallmann, C.A., et al., 2014. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature, 511 (7509), 341–343. doi: 10.1038/nature13531.
  • Hong, X., et al., 2018. Changes of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus). Environmental Pollution (Barking, Essex: 1987), 233, 862–871. doi: 10.1016/j.envpol.2017.12.036.
  • Hussain, B., et al., 2018. Fish eco-genotoxicology: Comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution. Saudi Journal of Biological Sciences, 25 (2), 393–398. doi: 10.1016/j.sjbs.2017.11.048.
  • Islam, M.A., et al., 2019. Acute toxicity of imidacloprid on the developmental stages of common carp Cyprinus carpio. Toxicology and Environmental Health Sciences, 11 (3), 244–251. doi: 10.1007/s13530-019-0410-8.
  • Iturburu, F.G., et al., 2017. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environmental Toxicology and Chemistry, 36 (3), 699–708. doi: 10.1002/etc.3574.
  • Kataria, S.K., et al., 2016. Cytogenetic and hematological alterations induced by acute oral exposure of imidacloprid in female mice. Drug and Chemical Toxicology, 39 (1), 59–65. doi: 10.3109/01480545.2015.1026972.
  • Kaushik, A., et al., 2010. Pesticide pollution of river Ghaggar in Haryana, India. Environmental Monitoring and Assessment, 160 (1–4), 61–69. doi: 10.1007/s10661-008-0657-z.
  • Kaushik, C.P., et al., 2008. Pesticide residues in river Yamuna and its canals in Haryana and Delhi, India. Environmental Monitoring and Assessment, 144 (1–3), 329–340. doi: 10.1007/s10661-007-9996-4.
  • Kumar, R., et al., 2010. Investigation of the genotoxicity of malathion to freshwater teleost fish Channa punctatus (Bloch) using the micronucleus test and comet assay. Archives of Environmental Contamination and Toxicology, 58 (1), 123–130. doi: 10.1007/s00244-009-9354-3.
  • Lee, R.F., and Steinert, S., 2003. Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutation Research, 544 (1), 43–64. doi: 10.1016/S1383-5742(03)00017-6.
  • Malik, A., Ojha, P., and Singh, K.P., 2009. Levels and distribution of persistent organochlorine pesticide residues in water and sediments of Gomti River (India)—a tributary of the Ganges River. Environmental Monitoring and Assessment, 148 (1–4), 421–435. doi: 10.1007/s10661-008-0172-2.
  • Maria, V.L., et al., 2009. Wild juvenile Dicentrarchus labrax L. liver antioxidant and damage responses at Aveiro Lagoon, Portugal. Ecotoxicology and Environmental Safety, 72 (7), 1861–1870. doi: 10.1016/j.ecoenv.2009.06.001.
  • Mishra, D.K., Bohidar, K., and Pandey, A.K., 2006. Responses of interregnal cells of freshwater teleost, Channa punctatus (Bloch), exposed to ­sublethal concentrations of carbaryl and cartap. Journal of Ecophysiology and Occupational Health, 6, 137–141.
  • Mitchelmore, C.L., and Chipman, J.K., 1998. DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutation Research, 399 (2), 135–147. doi: 10.1016/s0027-5107(97)00252-2.
  • Mutiyar, P.K., and Mittal, A.K., 2013. Status of organochlorine pesticides in Ganga river basin: anthropogenic or glacial? Drinking Water Engineering and Science, 6 (2), 69–80. doi: 10.5194/dwes-6-69-2013.
  • Nagpure, N. S., et al., 2007. Genotoxicity assessment in fishes: A practical approach. Lucknow, India: NBFGR, 126.
  • Nwani, C.D., et al., 2011. Mutagenic and genotoxic assessment of atrazine-based herbicide to freshwater fish Channa punctatus (Bloch) using micronucleus test and single cell gel electrophoresis. Environmental Toxicology and Pharmacology, 31 (2), 314–322. doi: 10.1016/j.etap.2010.12.001.
  • Organisation for Economic Co-operation and Development, OECD, 2019. Test No. 203: fish, acute toxicity test. France: OECD Publishing.
  • Pai, A.K., Chhonkar, P.K., and Agnihotri, N.P., 1999. Persistence of pendimethalin and anilofos in six diverse soils. Pesticide Research Journal, 11 (2), 132–137.
  • Pandey, A.K., George, K.C., and Peer Mohamed, M., 1995. Effect of DDT on thyroid gland of the mullet Liza parsia (Hamilton-Buchanan). Journal of the Marine Biological Association of India, 37 (1), &2), 287–290.
  • Pandey, A.K., Mishra, D.K., and Bohidar, K., 2014. Histopathological changes in gonadotrophs of Channa punctatus (Bloch) exposed to sublethal concentration of carbaryl and cartap. Journal of Experimental Zoology India, 17, 451–455.
  • Patel, S.K., SawantKonkan, B., and Indulkar, S., 2018. Haematological changes in fresh water fish rosy barb Pethia conchonius exposed to an agrochemical calcium carbide. Journal of Entomology and Zoology Studies, 6 (2), 562–566.
  • Pawar, D.H., 2012. River water pollution, an environmental crisis a case study of Panchaganga river of Kolhapur city. International Journal of Ecology and Development, 9 (1), 131–133.
  • Pérez-Iglesias, J.M., et al., 2014. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicology and Environmental Safety, 104, 120–126. doi: 10.1016/j.ecoenv.2014.03.002.
  • PPDB, 2015. Pesticide properties database imidacloprid. Available from: http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/397.htm. [Accessed 19 January 2023]
  • Qadir, S., et al., 2014. Effects of imidacloprid on the hematological and serum biochemical profile of Labeo rohita. Pakistan Journal of Zoology, 46 (4), 1085–1090.
  • Rice, E.W., Bridgewater, L., and American Public Health Association, 2012. Standard methods for the examination of water and wastewater (Vol. 10). Washington, DC: American Public Health Association.
  • Sánchez-Bayo, F., 2012. Insecticides mode of action in relation to their toxicity to non-target organisms. Journal of Environmental and Analytical Toxicology, S4: 002, 2–9. doi: 10.4172/2161-0525.S4-002.
  • Sarkar, M.A., et al., 1999. Effect of pH and type of formulation on the persistence of imidacloprid in water. Bulletin of Environmental Contamination and Toxicology, 63 (5), 604–609. doi: 10.1007/s001289901023.
  • Shah, R.G., et al., 1997. Determination of genotoxicity of the metabolites of the pesticides Guthion, Sencor, Lorox, Reglone, Daconil and Admire by 32P-postlabeling. Molecular and Cellular Biochemistry, 169 (1-2), 177–184.
  • Sharma, S., et al., 2007. Studies on the genotoxicity of endosulfan in different tissues of fresh water fish Mystus vittatus using the comet assay. Archives of Environmental Contamination and Toxicology, 53 (4), 617–623. doi: 10.1007/s00244-006-0228-7.
  • Shen, H.M., and Liu, Z.G., 2006. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biology and Medicine, 40 (6), 928–939. doi: 10.1016/j.freeradbiomed.2005.10.056.
  • Simon-Delso, N., et al., 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 22 (1), 5–34. doi: 10.1007/s11356-014-3470-y.
  • Singh, H., et al., 2023. Interactive effect of carbendazim and imidacloprid on buffalo bone marrow derived mesenchymal stem cells: oxidative stress, cytotoxicity and genotoxicity. Drug and Chemical Toxicology, 46 (1), 35–49. doi: 10.1080/01480545.2021.2007023.
  • Singh, N.P., et al., 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175 (1), 184–191. doi: 10.1016/0014-4827(88)90265-0.
  • Singh, S., et al., 2015. Analyses of pesticide residues in water, sediment and fish tissue from river Deomoni flowing through the tea gardens of Terai Region of West Bengal, India. International Journal of Fisheries and Aquatic Studies, 3 (2), 17–23.
  • Speit, G., and Hartmann, A., 1995. The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis, 10 (6), 555–559. doi: 10.1093/mutage/10.6.555.
  • Srivastava, P., Singh, A., and Pandey, A.K., 2016. Pesticides toxicity in fishes: biochemical, physiological and genotoxic aspects. Biochemical and Cellular Archives, 16 (2), 199–218.
  • Talapatra, S.N., et al., 2007. Assessment of genetic biomarkers with special reference to micronucleated and binucleated erythrocytes in two fish species grown at Industrial vicinity of thermal power plants, Kolkata, India. Asian Journal of Water, Environment and Pollution, 4 (1), 139–144.
  • Thunnissen, N.W., et al., 2020. Ecological risks of imidacloprid to aquatic species in the Netherlands: Measured and estimated concentrations compared to species sensitivity distributions. Chemosphere, 254, 126604. doi: 10.1016/j.chemosphere.2020.126604.
  • Tice, R.R., et al., 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35 (3), 206–221. doi: 10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J.
  • Tisler, T., et al., 2009. Hazard identification of imidacloprid to an aquatic environment. Chemosphere, 76 (7), 907–914. doi: 10.1016/j.chemosphere.2009.05.002.
  • Tomlin, C. D. S., 2006. The pesticide manual: a world compendium. 14th ed. Hampshire, UK: British Crop Protection Council, 598–599.
  • Tyor, A.K., and Harkrishan, K., 2016. Effects of imidacloprid on viability and hatchability of embryos of the common carp (Cyprinus carpio L.). International Journal of Fisheries and Aquatic Studies, 4 (4), 385–389.
  • Ullah, R., et al., 2014. Acute toxic effects of cypermethrin on hematology and morphology of liver, brain and gills of mahseer (Tor putitora). International Journal of Agriculture and Biology, 17 (1), 199–204.
  • Ullah, R., et al., 2014. Cypermethrin induced behavioral and biochemical changes in mahseer, Tor putitora. The Journal of Toxicological Sciences, 39 (6), 829–836. doi: 10.2131/jts.39.829.
  • Ullah, S., and Zorriehzahra, M.J., 2015. Ecotoxicology: a review of pesticides induced toxicity in fish. Advances in Animal and Veterinary Sciences, 3 (1), 40–57. doi: 10.14737/journal.aavs/2015/3.1.40.57.
  • Van der Oost, R., Beyer, J., and Vermeulen, N.P., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13 (2), 57–149. doi: 10.1016/s1382-6689(02)00126-6.
  • Van Dijk, T.C., Van Staalduinen, M.A., and Van der Sluijs, J.P., 2013. Macro-invertebrate decline in surface water polluted with imidacloprid. PloS One., 8 (5), e62374. doi: 10.1371/journal.pone.0089837.
  • Vieira, C.E.D., et al., 2018. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere, 195, 125–134. doi: 10.1016/j.chemosphere.2017.12.077.
  • Vignet, C., et al., 2019. Imidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka (Oryzias latipes) than in zebrafish (Danio rerio). Chemosphere, 225, 470–478. doi: 10.1016/j.chemosphere.2019.03.002.
  • Wang, Y., et al., 2017. Individual and mixture effects of five agricultural pesticides on zebrafish (Danio rerio) larvae. Environmental Science and Pollution Research International, 24 (5), 4528–4536. doi: 10.1007/s11356-016-8205-9.
  • Wast, N., et al., 2016. Acute toxicity assessment of Imidacloprid 70% WG to a guppy, Poecilia reticulata(Peters). Global Veterinary, 17, 245–249.
  • Wu, S., et al., 2018. Joint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio). Environmental Pollution (Barking, Essex : 1987), 235, 470–481. doi: 10.1016/j.envpol.2017.12.120.
  • Xia, X., et al., 2016. Toxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus). Environmental Toxicology and Pharmacology, 45, 132–139. doi: 10.1016/j.etap.2016.05.030.
  • Xiao, Q., Zhang, S.C., and Zhao, B.S., 2007. Toxic effects of nonylphenol on the gonad of adult rosy barb. Huan Jing ke Xue = Huanjing Kexue, 28 (11), 2580–2585.
  • Zhang, C., et al., 2020. Contamination of neonicotinoid insecticides in soil-water-sediment systems of the urban and rural areas in a rapidly developing region: Guangzhou, South China. Environment International, 139, 105719. doi: 10.1016/j.envint.2020.105719.
  • Zheng, W., and Liu, W., 1999. Kinetics and mechanism of the hydrolysis of imidacloprid. Pesticide Science, 55 (4), 482–485. doi: 10.1002/(SICI)1096-9063(199904)55:4%3C482::AID-PS932%3E3.0.CO;2-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.