49
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermal shock fracture in a cracked strip: Incorporating convective heat transfer between lateral surfaces and ambient environment

, , &
Pages 672-694 | Received 29 Aug 2023, Accepted 04 Jan 2024, Published online: 02 Feb 2024

References

  • H. F. Nied and F. Erdogan, “Transient thermal stress problem for a circumferentially cracked hollow cylinder,” J. Therm. Stresses, vol. 6, no. 1, pp. 1–14, 1983. DOI: 10.1080/01495738308942161.
  • J. S. Hu, B. L. Wang, J. E. Li, and Z. Li, “Thermal shock resistance enhancement of auxetic honeycomb layer considering multi-cracking and temperature-dependent material properties,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106072, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106072.
  • A. B. Zhang and B. L. Wang, “Explicit solutions of an elliptic hole or a crack problem in thermoelectric materials,” Eng. Fract. Mech., vol. 151, pp. 11–21, 2016. DOI: 10.1016/j.engfracmech.2015.11.013.
  • J. C. Han and B. L. Wang, “Thermal shock resistance enhancement of functionally graded materials by multiple cracking,” Acta Mater., vol. 54, no. 4, pp. 963–973, 2006. DOI: 10.1016/j.actamat.2005.10.036.
  • M. D. Iqbal, et al., “Thermoelastic fracture analysis of functionally graded materials using the scaled boundary finite element method,” Eng. Fract. Mech., vol. 264, pp. 108305, 2022. DOI: 10.1016/j.engfracmech.2022.108305.
  • N. Noda, “Thermal stresses in functionally graded materials,” J. Therm. Stresses, vol. 22, no. 4–5, pp. 477–512, 1999. DOI: 10.1080/014957399280841.
  • C. F. Gao and M. Z. Wang, “Collinear permeable cracks in thermopiezoelectric materials,” Mech. Mater, vol. 33, no. 1, pp. 1–9, 2001. DOI: 10.1016/S0167-6636(00)00033-8.
  • A. B. Zhang and B. L. Wang, “Crack branching in thermopiezoelectric materials,” Int. J. Solids Struct., vol. 50, no. 19, pp. 2962–2969, 2013. DOI: 10.1016/j.ijsolstr.2013.05.009.
  • W. Yang, M. Nourazar, Z. Chen, K. Hu, and X. Zhang, “Dynamic response of a cracked thermopiezoelectric strip under thermoelectric loading using fractional heat conduction,” Appl. Math. Model, vol. 103, pp. 580–603, 2022. DOI: 10.1016/j.apm.2021.11.005.
  • Y. J. Cui, B. L. Wang, K. F. Wang, G. G. Wang, and A. B. Zhang, “An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device,” Renew. Energ., vol. 182, pp. 923–933, 2022. DOI: 10.1016/j.renene.2021.10.076.
  • H. P. Song, C. F. Gao, and J. Li, “Two-dimensional problem of a crack in thermoelectric materials,” J. Therm. Stresses, vol. 38, no. 3, pp. 325–337, 2015. DOI: 10.1080/01495739.2015.1015369.
  • A. Zhang and B. Wang, “Temperature and electric potential fields of an interface crack in a layered thermoelectric or metal/thermoelectric material,” Int. J. Therm. Sci., vol. 104, pp. 396–403, 2016. DOI: 10.1016/j.ijthermalsci.2016.01.023.
  • M. I. A. Othman, M. Fekry, and M. Marin, “Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating,” Struct. Eng. Mech., vol. 73, pp. 621–629, 2020. DOI: 10.12989/sem.2020.73.6.621.
  • T. Q. Qiu and C. L. Tien, “Short-pulse laser heating on metals,” Int. J. Heat Mass Tran., vol. 35, no. 3, pp. 719–726, 1992. DOI: 10.1016/0017-9310(92)90131-B.
  • B. L. Wang and J. C. Han, “Non-Fourier heat conduction in layered composite materials with an interface crack,” Int. J. Eng. Sci., vol. 55, pp. 66–75, 2012. DOI: 10.1016/j.ijengsci.2012.02.006.
  • M. A. Al-Nimr, “Heat transfer mechanisms during short-duration laser heating of thin metal films,” Int. J. Thermophys., vol. 18, no. 5, pp. 1257–1268, 1997. DOI: 10.1007/BF02575260.
  • A. Zhang, G. Li, B. Wang, J. Wang, and J. Du, “Analytical solutions of thermomechanical responses in skin tissue for hyperthermia treatment,” Int. Commun. Heat Mass Transf., vol. 140, pp. 106521, 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106521.
  • C. Cattaneo, “A form of heat-conduction equations which eliminates the paradox of instantaneous propagation,” Comptes. Rendus, vol. 247, pp. 431, 1958.
  • P. Vernotte, “Some possible complications in the phenomena of thermal conduction,” Compte. Rendus, vol. 252, pp. 2190–2191, 1961.
  • T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer, vol. 115, no. 4, pp. 835–841, 1993. DOI: 10.1115/1.2911377.
  • B. Y. Cao and Z. Y. Guo, “Equation of motion of a phonon gas and non-Fourier heat conduction,” J. Appl. Phys., vol. 102, pp. 053503, 2007. DOI: 10.1063/1.2775215.
  • D. Y. Tzou, “The generalized lagging response in small-scale and high-rate heating,” Int. J. Heat Mass Tran., vol. 38, no. 17, pp. 3231–3240, 1995. DOI: 10.1016/0017-9310(95)00052-B.
  • K. Hu and Z. Chen, “Thermoelastic analysis of a partially insulated crack in a strip under thermal impact loading using the hyperbolic heat conduction theory,” Int. J. Eng. Sci., vol. 51, pp. 144–160, 2012. DOI: 10.1016/j.ijengsci.2011.10.009.
  • Z. Xue, G. Cao, Y. Yu, and J. Liu, “Coupled thermoelastic fracture analysis of a cracked fiber reinforced composite hollow cylinder by fractional Cattaneo-Vernotte models,” Theor. Appl. Fract. Mec., vol. 121, pp. 103538, 2022. DOI: 10.1016/j.tafmec.2022.103538.
  • S. M. Abo-Dahab, A. E. Abouelregal, and M. Marin, “Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam,” Symmetry, vol. 12, no. 7, pp. 1094, 2020. DOI: 10.3390/sym12071094.
  • A. Zhang, D. Pang, B. Wang, and J. Wang, “Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting,” Energy, vol. 262, pp. 125621, 2023. DOI: 10.1016/j.energy.2022.125621.
  • W. Yang, A. Pourasghar, Y. Cui, L. Wang, and Z. Chen, “Transient heat transfer analysis of a cracked strip irradiated by ultrafast Gaussian laser beam using dual-phase-lag theory,” Int. J. Heat Mass Tran., vol. 203, pp. 123771, 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123771.
  • S. L. Guo, B. L. Wang, and J. E. Li, “Surface thermal shock fracture and thermal crack growth behavior of thin plates based on dual-phase-lag heat conduction,” Theor. Appl. Fract. Mec., vol. 96, pp. 105–113, 2018. DOI: 10.1016/j.tafmec.2018.04.007.
  • W. Yang and Z. Chen, “Nonlocal dual-phase-lag heat conduction and the associated nonlocal thermal-viscoelastic analysis,” Int. J. Heat Mass Tran., vol. 156, pp. 119752, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119752.
  • Z. Wen, C. Hou, M. Zhao, and X. Wan, “Transient heat transfer analysis of an orthotropic composite plate with oblique cracks using dual-phase-lagging model,” Int. J. Solids Struct., vol. 254–255, pp. 111844, 2022. DOI: 10.1016/j.ijsolstr.2022.111844.
  • A. Zhang, J. Wang, and B. Wang, “Bio-thermo-viscoelastic behavior in multilayer skin tissue,” J. Therm. Stresses, vol. 45, no. 7, pp. 559–575, 2022. DOI: 10.1080/01495739.2022.2073932.
  • D. Pang, A. Zhang, Z. Wen, B. Wang, and J. Wang, “Energy conversion efficiency of thermoelectric power generators with cylindrical legs,” J. Energy Resour. Technol., vol. 144, no. 3, pp. 032104, 2022. DOI: 10.1115/1.4053297.
  • B. Z. Hong and T. D. Yuan, “Heat transfer and nonlinear thermal stress analysis of a convective surface mount package,” IEEE Trans. Compon. Packag. Manufact. Technol. Part A, vol. 20, pp. 213–219, 1997. DOI: 10.1109/95.588576.
  • X. Chen, J. Tang, H. Ding, and A. Liu, “An accurate transient model for temperature fluctuation on localized shear band in serrated chip formation,” Int. J. Mech. Sci., vol. 204, pp. 106588, 2021. DOI: 10.1016/j.ijmecsci.2021.106588.
  • D. Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior. Washington, DC: John Wiley & Sons, 2014.
  • D. W. Hahn and M. N. Özişik, Heat Conduction, 3rd ed., Hoboken: John Wiley & Sons, Inc, 2012.
  • F. Erdogan, “Complex Function Technique,” in Continuum Physics, A. C. Eringen, Ed. New York: Academic Press, vol. II, 1975, pp. 523–603.
  • F. Erdogan and G. D. Gupta, “Layered composites with an interface flaw,” Int. J. Solids Struct., vol. 7, no. 8, pp. 1089–1107, 1971. DOI: 10.1016/0020-7683(71)90082-5.
  • F. Durbin, “Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method,” Comput. J., vol. 17, no. 4, pp. 371–376, 1974. DOI: 10.1093/comjnl/17.4.371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.