162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multi-objective topology optimization for thermo-elastic systems based on periodic constraints

& ORCID Icon
Pages 695-725 | Received 09 Oct 2023, Accepted 21 Jan 2024, Published online: 05 Feb 2024

References

  • C. Wang, et al., “Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components,” Chin. J. Aeronaut., vol. 34, no. 5, pp. 386–398, 2021. DOI: 10.1016/j.cja.2020.08.015.
  • D. Jankovics and A. Barari, “Customization of automotive structural components using additive manufacturing and topology optimization,” 13th International-Federation-of-Automatic-Control (IFAC) Workshop Intelligent Manufacturing Syst. (IMS), Elsevier, Oshawa, Canada, vol. 52, no. 10, pp. 212–217, 2019. DOI: 10.1016/j.ifacol.2019.10.066.
  • L. Ferrari, et al., “Sandwich structured ceramic matrix composites with periodic cellular ceramic cores: an active cooled thermal protection for space vehicles,” Compos. Struct., vol. 154, pp. 61–68, 2016. DOI: 10.1016/j.compstruct.2016.07.043.
  • S. S. Feng, M. Z. Li, J. H. Joo, K. J. Kang, T. Kim and T. J. Lu, “Thermomechanical properties of brazed wire-woven bulk kagome cellular metals for multifunctional applications,” J. Thermophys. Heat Transf., vol. 26, no. 1, pp. 66–74, 2012. DOI: 10.2514/1.49434.
  • H. B. Yan, Q. C. Zhang and T. J. Lu, “Heat transfer enhancement by X-type lattice in ventilated brake disc,” Int. J. Therm. Sci., vol. 107, pp. 39–55, 2016. DOI: 10.1016/j.ijthermalsci.2016.03.026.
  • K. J. Kang, “Wire-woven cellular metals: the present and future,” Prog. Mater. Sci., vol. 69, pp. 213–307, 2015. DOI: 10.1016/j.pmatsci.2014.11.003.
  • J. Wu, O. Sigmund and J. P. Groen, “Topology optimization of multi-scale structures: a review,” Struct. Multidisc. Optim., vol. 63, no. 3, pp. 1455–1480, 2021. DOI: 10.1007/s00158-021-02881-8.
  • M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method,” Comput. Meth. Appl. Mech. Eng., vol. 71, no. 2, pp. 197–224, 1988. DOI: 10.1016/0045-7825(88)90086-2.
  • Y. M. Xie and G. P. Steven, “A simple evolutionary procedure for structural optimization,” Comput. Struct., vol. 49, no. 5, pp. 885–896, 1993. DOI: 10.1016/0045-7949(93)90035-C.
  • Y. M. Xie and G. P. Steven, “Basic evolutionary structural optimization,” in: Evolutionary Structural Optimization. Y.M. Xie, G.P. Steven Eds. London: Springer London, 1997, pp. 12–29. DOI: 10.1007/978-1-4471-0985-3_2.
  • K. Svanberg, “The method of moving asymptotes—a new method for structural optimization,” Numer Methods Eng., vol. 24, no. 2, pp. 359–373, 1987. DOI: 10.1002/nme.1620240207.
  • G. Allaire, F. Jouve and A. M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J. Comput. Phys., vol. 194, no. 1, pp. 363–393, 2004. DOI: 10.1016/j.jcp.2003.09.032.
  • M. Y. Wang, X. M. Wang and D. M. Guo, “A level set method for structural topology optimization,” Comput. Meth. Appl. Mech. Eng., vol. 192, no. 1-2, pp. 227–246, 2003. DOI: 10.1016/S0045-7825(02)00559-5.
  • W. S. Zhang, J. Yuan, J. Zhang and X. Guo, “A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model,” Struct Multidisc Optim, vol. 53, no. 6, pp. 1243–1260, 2016. DOI: 10.1007/s00158-015-1372-3.
  • X. Guo, W. S. Zhang and W. L. Zhong, “Doing topology optimization explicitly and geometrically-a new moving morphable components based framework,” J. Appl. Mech.-Trans. ASME, vol. 81, no. 8, pp. 12, 2014. DOI: 10.1142/9781783266852_0016.
  • Y. K. Sui and D. Q. Yang, “A new method for structural topological optimization based on the concept of independent continuous variables and smooth model,” Acta Mech. Sin., vol. 14, no. 2, pp. 179–185, 1998. DOI: 10.1007/BF02487752.
  • M. Fujioka, M. Shimoda and M. Al Ali, “Concurrent shape optimization of a multiscale structure for controlling macrostructural stiffness,” Struct. Multidisc. Optim., vol. 65, no. 7, pp. 27, 2022. DOI: 10.1007/s00158-022-03304-y.
  • K. Sab and B. Nedjar, “Periodization of random media and representative volume element size for linear composites,” C. R. Mec., vol. 333, no. 2, pp. 187–195, 2005. DOI: 10.1016/j.crme.2004.10.003.
  • M. Burger and R. Stainko, “Phase-field relaxation of topology optimization with local stress constraints,” SIAM J. Control Optim., vol. 45, no. 4, pp. 1447–1466, 2006. DOI: 10.1109/CCC.1996.507679.
  • S. G. Deng and K. Suresh, “Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set,” Struct. Multidisc. Optim., vol. 56, no. 6, pp. 1413–1427, 2017. DOI: 10.1007/s00158-017-1732-2.
  • Q. X. Meng, B. Xu, C. Wang and L. Zhao, “Stress constrained thermo-elastic topology optimization based on stabilizing control schemes,” J. Therm. Stresses, vol. 43, no. 8, pp. 1040–1068, 2020. DOI: 10.1080/01495739.2020.1766391.
  • J. L. Chen, Q. H. Zhao, L. Zhang and K. Y. Ma, “Topology optimization of transient thermo-elastic structure considering regional temperature control,” Acta Mech. Solida Sin., vol. 36, no. 2, pp. 262–273, 2023. DOI: 10.1007/s10338-022-00377-6.
  • J. L. Chen, Q. H. Zhao and L. Zhang, “Multi-material topology optimization of thermo-elastic structures with stress constraint,” Mathematics, vol. 10, no. 8, pp. 1216, 2022. DOI: 10.3390/math10071091.
  • J. Zheng, X. P. Rong and C. Jiang, “Thermoelastic topology optimization for structures with temperature-dependent material properties,” Sci. China Technol. Sci., vol. 66, no. 12, pp. 3488–3503, 2023. DOI: 10.1007/s11431-023-2458-6.
  • M. Al Ali and M. Shimoda, “On concurrent multiscale topology optimization for porous structures under hygro-thermo-elastic multiphysics with considering evaporation,” Num. Methods Eng., vol. 124, no. 14, pp. 3219–3249, 2023. DOI: 10.1002/nme.7245.
  • M. Al Ali and M. Shimoda, “On multiphysics concurrent multiscale topology optimization for designing porous heat-activated compliant mechanism under convection for additive manufacture,” Eng. Struct., vol. 294, pp. 116756, 2023. DOI: 10.1016/j.engstruct.2023.116756.
  • J. Zheng, G. T. Zhang and C. Jiang, “Stress-based topology optimization of thermoelastic structures considering self-support constraints,” Comput. Meth. Appl. Mech. Eng., vol. 408, pp. 115957, 2023. DOI: 10.1016/j.cma.2023.115957.
  • O. Sigmund, “Materials with prescribed constitutive parameters - an inverse homogenization problem,” Int. J. Solids Struct, vol. 31, no. 17, pp. 2313–2329, 1994. DOI: 10.1016/0020-7683(94)90154-6.
  • O. Sigmund and S. Torquato, “Design of materials with extreme thermal expansion using a three-phase topology optimization method,” J. Mech. Phys. Solids, vol. 45, no. 6, pp. 1037–1067, 1997. DOI: 10.1117/12.267131.
  • X. Huang and Y. M. Xie, “Optimal design of periodic structures using evolutionary topology optimization,” Struct. Multidisc. Optim., vol. 36, no. 6, pp. 597–606, 2008. DOI: 10.1007/s00158-007-0196-1.
  • P. Yan, C. P. Jiang, F. Song and X. H. Xu, “Estimation of transverse thermal conductivity of doubly-periodic fiber reinforced composites,” Chin. J. Aeronaut., vol. 23, no. 1, pp. 54–60, 2010. DOI: 10.1016/S1000-9361(09)60187-4.
  • G. Q. He, X. D. Huang, H. Wang and G. Y. Li, “Topology optimization of periodic structures using BESO based on unstructured design points,” Struct. Multidisc. Optim., vol. 53, no. 2, pp. 271–275, 2016. DOI: 10.1007/s00158-015-1342-9.
  • A. Asadpoure, M. Tootkaboni and L. Valdevit, “Topology optimization of multiphase architected materials for energy dissipation,” Comput. Meth. Appl. Mech. Eng., vol. 325, pp. 314–329, 2017. DOI: 10.1016/j.cma.2017.07.007.
  • H. X. Jiang, B. L. Wei, E. L. Zhou, Y. Wu and X. K. Li, “Robust topology optimization for thermoelastic hierarchical structures with hybrid uncertainty,” J. Therm. Stresses, vol. 44, no. 12, pp. 1458–1478, 2021. DOI: 10.1080/01495739.2021.1999877.
  • X. Q. Li, Q. H. Zhao, H. X. Zhang, T. Z. Zhang and J. L. Chen, “Robust topology optimization of periodic multi-material functionally graded structures under loading uncertainties,” CMES-Comp. Model. Eng. Sci., vol. 127, no. 2, pp. 683–704, 2021. DOI: 10.32604/cmes.2021.015685.
  • X. Q. Li, Q. H. Zhao, K. Long and H. X. Zhang, “Multi-material topology optimization of transient heat conduction structure with functional gradient constraint,” Int. Commun. Heat Mass Transf., vol. 131, pp. 105845, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105845.
  • J. Gao, X. M. Wu, M. Xiao, V. P. Nguyen, L. Gao and T. Rabczuk, “Multi-patch isogeometric topology optimization for cellular structures with flexible designs using Nitsche’s method,” Comput. Meth. Appl. Mech. Eng., vol. 410, pp. 116036, 2023. DOI: 10.1016/j.cma.2023.116036.
  • A. P. Karafillis and M. C. Boyce, “Tooling and binder design for sheet metal forming processes compensating springback error,” Int. J. Mach. Tools Manuf., vol. 36, no. 4, pp. 503–526, 1996. DOI: 10.1016/0890-6955(95)00023-2.
  • J. F. A. Madeira, H. Rodrigues and H. Pina, “Multi-objective optimization of structures topology by genetic algorithms,” Adv. Eng. Softw., vol. 36, no. 1, pp. 21–28, 2005. DOI: 10.1016/j.advengsoft.2003.07.001.
  • J. Z. Lin, Z. Luo and L. Y. Tong, “A new multi-objective programming scheme for topology optimization of compliant mechanisms,” Struct. Multidisc. Optim., vol. 40, no. 1-6, pp. 241–255, 2010. DOI: 10.1007/s00158-008-0355-z.
  • K. H. Cho, J. Y. Park, S. P. Ryu, J. Y. Park and S. Y. Han, “Reliability-based topology optimization based on bidirectional evolutionary structural optimization using multi-objective sensitivity numbers,” Int. J. Automot. Technol., vol. 12, no. 6, pp. 849–856, 2011. DOI: 10.1007/s12239-011-0097-6.
  • D. M. Li, X. M. Zhang, Y. S. Guan, H. Zhang and N. F. Wang, “Multi-objective topology optimization of thermo-mechanical compliant mechanisms,” CJME, vol. 24, no. 06, pp. 1123–1129, 2011. DOI: 10.3901/CJME.2011.06.1123.
  • J. D. Deng, J. Yan and G. D. Cheng, “Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material,” Struct. Multidisc. Optim., vol. 47, no. 4, pp. 583–597, 2013. DOI: 10.1007/s00158-012-0849-6.
  • Q. Yang, B. Gao, Z. Xu, W. Xie and S. Meng, “Topology optimisations for integrated thermal protection systems considering thermo-mechanical constraints,” Appl. Therm. Eng., vol. 150, pp. 995–1001, 2019. DOI: 10.1016/j.applthermaleng.2019.01.067.
  • J. B. Q. Zuliani, M. W. Cohen, F. G. Guimaraes and C. A. Severiano, “A multi-objective approach for multi-material topology and shape optimization,” Eng. Optim., vol. 51, no. 6, pp. 915–940, 2019. DOI: 10.1080/0305215X.2018.1514501.
  • Q. X. Meng, B. Xu, C. G. Huang and G. Wang, “Lightweight topology optimization of thermal structures under compliance, stress and temperature constraints,” J. Therm. Stresses, vol. 44, no. 9, pp. 1121–1149, 2021. DOI: 10.1080/01495739.2021.1958721.
  • M. Al Ali and M. Shimoda, “Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB,” Struct. Multidiscip. Optim., vol. 65, no. 7, pp. 26, 2022. DOI: 10.1007/s00158-022-03291-0.
  • M. Y. Li, C. Ma, S. Zeng, J. R. Hu, J. L. Liu and S. L. Wang, “Cooling water jacket design of motorized spindle system using multi-objective topology optimization,” Appl. Therm. Eng., vol. 224, pp. 120112, 2023. DOI: 10.1016/j.applthermaleng.2023.120112.
  • J. Y. Han and A. Vartosh, “Multi-objective grasshopper optimization algorithm for optimal energy scheduling by considering heat as integrated demand response,” Appl. Therm. Eng., vol. 234, pp. 121242, 2023. DOI101016/j.applthermaleng.2023.121242. DOI: 10.1016/j.applthermaleng.2023.121242.
  • N. Bianco, A. Fragnito, M. Iasiello, G. M. Mauro and L. Mongibello, “Multi-objective optimization of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage: experiments and numerical modeling,” Appl. Therm. Eng., vol. 215, pp. 119047, 2022. DOI: 10.1016/j.applthermaleng.2022.119047.
  • E. L. Zhou, Y. Wu, X. Y. Lin, Q. Q. Li and Y. Xiang, “A normalization strategy for BESO-based structural optimization and its application to frequency response suppression,” Acta Mech., vol. 232, no. 4, pp. 1307–1327, 2021. DOI: 10.1007/s00707-020-02862-w.
  • P. F. Li, J. Yvonnet and Y. Wu, “Improved fracture resistance of 3D-printed elastoplastic structures with respect to their topology and orientation of deposited layers,” Int. J. Mech. Sci., vol. 220, pp. 107147, 2022. DOI: 10.1016/j.ijmecsci.2022.107147.
  • Z. Chen, K. Long, P. Wen and S. Nouman, “Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage,” Adv. Eng. Softw., vol. 150, pp. 102924, 2020. DOI: 10.1016/j.advengsoft.2020.102924.
  • K. Long, X. Wang and H. Liu, “Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming,” Struct. Multidisc. Optim., vol. 59, no. 5, pp. 1747–1759, 2018. DOI: 10.1007/s00158-018-2159-0.
  • C. Wang, E. L. Zhou, Y. Wu, E. Li and Y. Y. Huang, “Transient stress-constrained topology optimization of impacted structures,” Struct. Multidisc. Optim., vol. 66, no. 4, pp. 21, 2023. DOI: 10.1007/s00158-023-03558-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.