48
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Analysis of the thermal lubrication characteristics of cycloid pinwheel transmission mechanisms in RV reducers

&
Pages 600-628 | Received 19 Jun 2023, Accepted 29 Oct 2023, Published online: 12 Mar 2024

References

  • X. Li, C. Y. Li, Y. W. Wang, et al., “Analysis of a cycloid speed reducer considering tooth profile modification and clearance-fit output mechanism,” J. Mech. Design, vol. 139, no. 3, pp. 033303, 2017. DOI: 10.1115/1.4035541.
  • K. S. Lin, K. Y. Chan and J. J. Lee, “Kinematic error analysis and tolerance allocation of cycloidal gear reducers,” Mech. Mach. Theory, vol. 124, pp. 73–91, 2018. DOI: 10.1016/j.mechmachtheory.2017.12.028.
  • C. H. Huang and S. J. Tsai, “A study on loaded tooth contact analysis of a cycloid planetary gear reducer considering friction and bearing roller stiffness,” JAMDSM, vol. 11, no. 6, pp. JAMDSM0077–JAMDSM0077, 2017. DOI: 10.1299/jamdsm.2017jamdsm0077.
  • S. T. Li, “Design and strength analysis methods of the trochoidal gear reducers,” Mech. Mach. Theory, vol. 81, pp. 140–154, 2014. DOI: 10.1016/j.mechmachtheory.2014.07.001.
  • K. H. Kim, C. S. Lee and H. J. Ahn, “Torsional rigidity of a two-stage cycloid drive,” Trans. Korean Soc. Mech. Eng., vol. 33, no. 11, pp. 1217–1224, 2009. DOI: 10.3795/KSME-A.2009.33.11.1217.
  • N. Kumar, V. Kosse and A. Oloyede, “A new method to estimate effective elastic torsional compliance of single-stage cycloidal drives,” Mech. Mach. Theory, vol. 105, pp. 185–198, 2016. DOI: 10.1016/j.mechmachtheory.2016.06.023.
  • M. Blagojević, M. Matejić, N. Kostić, et al., “Theoreticaland and experimental testing of plastic cycloid reducer efficiency in dry conditions,” J. Balk. Tribol. Assoc., vol. 23, no. 2, pp. 367–375, 2017.
  • W. L. Song, X. Yang, H. Liu, et al., “A new method for calculating time-varying torsional stiffness of RV reducers with variable loads and tooth modifications,” J. Field Robotics, vol. 40, no. 6, pp. 1339–1345, 2023. DOI: 10.1002/rob.22172.
  • N. Kostić, M. Blagojević, N. Petrović, et al., “Determination of real clearances between cycloidal speed reducer elements by the application of heuristic optimization,” TFAMENA, vol. 42, no. 1, pp. 15–26, 2018. DOI: 10.21278/TOF.42102.
  • S. Pabiszczak and M. Kowal, “Efficiency of the eccentric rolling transmission,” Mech. Mach. Theory, vol. 169, no. 4, pp. 104655, 2022. DOI: 10.1016/j.mechmachtheory.2021.104655.
  • C. Zhu, Z. Sun, H. Liu, C. Song and Z. Gu, “Effect of tooth profile modification on lubrication performance of a cycloid drive,” Proc. Inst. Mech. Eng. J., vol. 229, no. 7, pp. 785–794, 2015. DOI: 10.1177/1350650115570402.
  • Z. Sun, C. Zhu, H. Liu, C. Song and Z. Gu, “Study on starved lubrication performance of a cycloid drive,” Tribol. Trans., vol. 59, no. 6, pp. 1005–1015, 2016. DOI: 10.1080/10402004.2015.1129569.
  • Z. Zhang, J. Wang, G. Zhou and X. Pei, “Analysis of mixed lubrication of rv reducer turning arm roller bearing,” ILT, vol. 70, no. 1, pp. 161–171, 2018. DOI: 10.1108/ILT-12-2016-0311.
  • J. Han, W. Li and Z. L. Qiao, “Analysis of mixed lubrication chara-cteristics of cycloid pin-wheel transmission,” Int. J. Precis. Eng. Manuf., vol. 22, no. 3, pp. 453–472, 2021. DOI: 10.1007/s12541-020-00466-x.
  • A. Mihailidis, E. Athanasopoulos and K. Agouridas, “EHL film thickness and load dependet power loss of cycloid reducer,” J. Mech. Eng. Sci., vol. 230, no. 7-8, pp. 1303–1317, 2016. DOI: 10.1177/0954406215612815.
  • H. Blok, “Theoretical study of temperature rise at surfaces of actual contact under oliness lubricating conditions,” Proc. General Discussion Lubrication Lubricants, vol. 2, pp. 222–235, 1937.
  • A. Mihailidis, E. Athanasopoulos and E. Okkas, “Flash temperature in cycloid reducer,” J. Balkan Tribological Assoc., vol. 21, no. 1, pp. 76–89, 2015.
  • T. F. Conry, “Thermal effects on traction in EHD lubrication,” J. Tribol., vol. 103, no. 4, pp. 533–538, 1981. DOI: 10.1115/1.3251732.
  • K. H. Kim and F. Sadeghi, “Three dimensional temperature distribution in EHD lubrication: part I-circular contact,” J. Tribol., vol. 114, no. 1, pp. 32–41, 1992. DOI: 10.1115/1.2920864.
  • P. Yang, S. Qu, Q. Chang and F. Guo, “On the theory of thermal elastohydrodynamic lubrication at high slide-roll ratios-line contact solution,” J. Tribol., vol. 123, no. 1, pp. 36–41, 2001. DOI: 10.1115/1.1330738.
  • P. Yang, S. Qu, M. Kaneta and H. Nishikawa, “Formation of steady dimples in point TEHL contacts,” J. Tribol., vol. 123, no. 1, pp. 42–49, 2001. DOI: 10.1115/1.1332399.
  • X. L. Liu and P. R. Yang, “Analysis of the thermal elastohydrodynamic lubrication of a finite line contact,” Tribol. Int., vol. 35, no. 3, pp. 137–144, 2002. DOI: 10.1016/S0301-679X(01)00107-4.
  • X. Liu, M. Jiang, P. Yang and M. Kaneta, “Non-newtonian thermal analyses of point EHL contacts using the Eyring model,” J. Tribol., vol. 127, no. 1, pp. 70–81, 2005. DOI: 10.1115/1.1843161.
  • W. Habchi, D. Eyheramendy, P. Vergne and G. Morales-Espejel, “A full-system approach of the elastohydrodynamic line/point contact problem,” J. Tribol., vol. 130, no. 2, pp. 021501, 2008. DOI: 10.1115/1.2842246.
  • W. Habchi and S. Bair, “The role of the thermal conductivity of steel in quantitative elastohydrodynamic friction,” Tribol. Int., vol. 142, pp. 105970, 2020. DOI: 10.1016/j.triboint.2019.105970.
  • H. Liang, D. Guo, T. Reddyhoff, H. Spikes and J. Luo, “Influence of thermal effects on elastohydrodynamic (EHD) lubrication behavior at high speeds,” Sci. China Technol. Sci, vol. 58, no. 3, pp. 551–558, 2014. DOI: 10.1007/s11431-014-5564-7.
  • X. P. Wang, Y. C. Liu and D. Zhu, “Numerical solution of mixed thermal elastohydrodynamic lubrication in point contacts with three dimensional surface roughness,” J. Tribol., vol. 139, no. 1, pp. 011501, 2016. DOI: 10.1115/1.4032963.
  • J. Cao, L. Zhai, Y. Luo and Z. Wang, “Transient TEHD analysis of a thrust bearing based on two-way fluid-solid-thermal interaction[C],” IOP Conf. Ser. Earth Environ. Sci., vol. 774, no. 1, pp. 012093, 2021. DOI: 10.1088/1755-1315/774/1/012093.
  • Z. R. Qiu and J. Xue, “Review of performance testing of high precision reducers for industrial robots,” Measurement, vol. 183, pp. 109794, 2021. DOI: 10.1016/j.measurement.2021.109794.
  • W. Bo, W. Jiaxu, Z. Guangwu, Y. Rongsong, Z. Hongjun and H. Tao, “Mixed lubrication analysis of modified cycloid gear used in the RV reducer,” Proc. Inst. Mech. Eng. J., vol. 230, no. 2, pp. 121–134, 2015. DOI: 10.1177/1350650115593301.
  • R. I. Tanner, Engineering Rheology. United States: society of Plastic Engineers, 1985,
  • Y. Liu, Q. J. Wang, S. Bair and P. Vergne, “A Quantitative solution for the full shear-thinning EHL point contact problem including traction,” Tribol. Lett., vol. 28, no. 2, pp. 171–181, 2007. DOI: 10.1007/s11249-007-9262-5.
  • Y. Takeuti, S. Zaima and N. Noda, “Thermal-stress problems in industry I: on thermoelastic distortion in machining metals,” J. Thermal Stresses, vol. 1, no. 2, pp. 199–210, 1978. DOI: 10.1080/01495737808926943.
  • Z. Y. Lu, Y. J. Lv and S. Li, “Thermal elastohydrodynamic lubrication analysis of cylindrical roller bearing considering thermal elastic deformation and surface roughness,” JME, vol. 54, no. 13, pp. 159–169, 2018. DOI: 10.3901/JME.2018.13.159.
  • C. H. Gu, Mathematical Physics Equation. Beijing: Higher Education Press, 2002, pp. 147–183.
  • Z. L. Qiao, J. Han and W. Dong, “A three-dimentional topography model of rough surfaces with high computational convergence,” J. Xi’an Jiaotong University, vol. 55, no. 6, pp. 141–149, 2021. in Chinese)
  • C. J. A. Roelands, “Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils,” Delft University of Technology, 1963.
  • C. Barus, “Isothermals, isopiestics and isometrics relative to viscosity,” Amer. J. Sci., vol. s3-45, no. 266, pp. 87–96, 1893. DOI: 10.2475/ajs.s3-45.266.87.
  • D. Dowson and G. R. Higginson, Elasto-Hydrodynamic Lubrication the Fundamentals of Roller and Gear Lubrication. Oxford: pergamon Press, 1966.
  • D. Zhu, “On some aspects of numerical solutions of thin-film and mixed elastohydrodynamic lubrication,” Proc. Inst. Mech. Eng. J., vol. 221, no. 5, pp. 561–579, 2007. DOI: 10.1243/13506501JET259.
  • R. Kumar, M. S. Azam and S. K. Ghosh, “Thermo-elastohydrodynamic lubrication simulation of the Rayleigh step bearing using the progressive mesh densification method,” Tribol. Int., vol. 134, pp. 264–280, 2019. (): DOI: 10.1016/j.triboint.2019.01.025.
  • Y. M. Zhang, T. Y. Zhou, S. T. Ji, et al., “Simulation and experimental analysis of working temperature field of needle roller bearing,” Mod. Mach. Tool Automatic Manuf. Tech., vol. 11, pp. 156–163, 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.