105
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Buckling variability analysis in damaged composite laminates subjected to thermally varying environment

, &
Pages 629-651 | Received 11 Jul 2023, Accepted 25 Dec 2023, Published online: 12 Mar 2024

References

  • M. L. Gossard, P. Seide, and W. M. Roberts, “Thermal Buckling of Plate,” NACA TN, 2771, 1952.
  • N. N. Huang and T. R. Tauchert, “Thermal buckling of clamped symmetric laminated plates,” Thin-Walled Struct., vol. 13, no. 4, pp. 259–273, 1992. DOI: 10.1016/0263-8231(92)90024-Q.
  • J.-S. Chang and F.-J. Shiao, “Thermal buckling analysis of isotropic and composite plates with a hole,” J. Therm. Stresses, vol. 13, no. 3, pp. 315–332, 1990. DOI: 10.1080/01495739008927040.
  • H. Abramovich, “Thermal buckling of cross-ply composite laminates using a first-order shear deformation theory,” Compos. Struct., vol. 28, no. 2, pp. 201–213, 1994. DOI: 10.1016/0263-8223(94)90049-3.
  • T. C. Mathew, G. Singh and G. Venkateswara Rao, “Thermal buckling of cross-ply composite laminates,” Comput. Struct., vol. 42, no. 2, pp. 281–287, 1992. DOI: 10.1016/0045-7949(92)90212-I.
  • K. D. Murphy and D. Ferreira, “Thermal buckling of rectangular plates,” Int. J. Solids Struct., vol. 38, no. 22–23, pp. 3979–3994, 2001. DOI: 10.1016/S0020-7683(00)00240-7.
  • A. V. Duran, N. A. Fasanella, V. Sundararaghavan and A. M. Waas, “Thermal buckling of composite plates with spatial varying fiber orientations,” Compos. Struct., vol. 124, pp. 228–235, 2015. DOI: 10.1016/j.compstruct.2014.12.065.
  • G. Manickam, A. Bharath, A. N. Das, A. Chandra and P. Barua, “Thermal buckling behaviour of variable stiffness laminated composite plates,” Mater. Today Commun., vol. 16, pp. 142–151, 2018. DOI: 10.1016/j.mtcomm.2018.05.003.
  • W. Zhao, K. Singh and R. K. Kapania, “Thermal buckling analysis and optimization of curvilinearly stiffened plates with variable angle tow laminates,” J. Spacecraft Rockets, vol. 56, no. 4, pp. 1189–1204, 2019. DOI: 10.2514/1.A34378.
  • A. Mannini, “Shear deformation effects on thermal buckling of cross-ply composite laminates,” Compos. Struct., vol. 39, no. 1–2, pp. 1–10, 1997. DOI: 10.1016/S0263-8223(96)00056-6.
  • A. L. Yettram and C. J. Brown, “The elastic stability of square perforated plates under bi-axial loading,” Comput. Struct., vol. 22, no. 4, pp. 589–594, 1986. DOI: 10.1016/0045-7949(86)90010-6.
  • D. J. Dawe and Y. S. Ge, “Thermal buckling of shear-deformable composite laminated plates by the spline finite strip method,” Comput. Methods Appl. Mech. Eng., vol. 185, no. 2–4, pp. 347–366, 2000. DOI: 10.1016/S0045-7825(99)00266-2.
  • N. Sharma, P. Kumar Swain, D. Kumar Maiti and B. Nath Singh, “Vibration and uncertainty analysis of functionally graded sandwich plate using layerwise theory,” AIAA J., vol. 60, no. 6, pp. 3402–3423, 2022. DOI: 10.2514/1.J061344.
  • M. Salehi, R. Gholami and R. Ansari, “Analytical solution approach for nonlinear vibration of shear deformable imperfect fg-gplr porous nanocomposite cylindrical shells,” Mech. Based Des. Struct. Mach., vol. 51, no. 4, pp. 2177–2199, 2021. DOI: 10.1080/15397734.2021.1891096.
  • N. Sharma, P. Tiwari, D. Kumar Maiti and D. Maity, “Free vibration analysis of functionally graded porous plate using 3-d degenerated shell element,” Compos. Part C: Open Access, vol. 6, p. 100208, 2021. DOI: 10.1016/j.jcomc.2021.100208.
  • L. H. Tenek, E. G. Henneke, II, and M. D. Gunzburger, “Vibration of delaminated composite plates and some applications to non-destructive testing,” Compos. Struct., vol. 23, no. 3, pp. 253–262, 1993. DOI: 10.1016/0263-8223(93)90226-G.
  • F. Ju, H. P. Lee and K. H. Lee, “Finite element analysis of free vibration of delaminated composite plates,” Compos. Eng., vol. 5, no. 2, pp. 195–209, 1995. DOI: 10.1016/0961-9526(95)90713-L.
  • N. Sharma, P. Kumar Swain and D. K. Maiti, “Aeroelastic control of delaminated variable angle tow laminated composite plate using piezoelectric patches,” J. Compos. Mater., vol. 56, no. 29, pp. 4375–4408, 2022. DOI: 10.1177/00219983221131617.
  • N. Sharma, P. Kumar Swain, D. Kumar Maiti and B. N. Singh, “Static and free vibration analyses and dynamic control of smart variable stiffness laminated composite plate with delamination,” Compos. Struct., vol. 280, p. 114793, 2022. DOI: 10.1016/j.compstruct.2021.114793.
  • N. Sharma, P. Kumar Swain and D. K. Maiti, “Active flutter suppression of damaged variable stiffness laminated composite rectangular plate with piezoelectric patches,” Mech. Adv. Mater. Struct., vol. 31, no. 6, pp. 1229–1249, 2022. DOI: 10.1080/15376494.2022.2134611.
  • S. Valliappan, V. Murti and Z. Wohua, “Finite element analysis of anisotropic damage mechanics problems,” Eng. Fract. Mech., vol. 35, no. 6, pp. 1061–1071, 1990. DOI: 10.1016/0013-7944(90)90134-3.
  • R. Talreja, “A continuum mechanics characterization of damage in composite materials,” Proc. R. Soc. London. A. Math. Phys. Sci., vol. 399, no. 1817, pp. 195–216, 1985.
  • R. M. V. Pidaparti, “Free vibration and flutter of damaged composite panels,” Compos. Struct., vol. 38, no. 1–4, pp. 477–481, 1997. DOI: 10.1016/S0263-8223(97)00082-2.
  • C. Kumar Hirwani, S. Kumar Panda and T. R. Mahapatra, “Nonlinear finite element analysis of transient behavior of delaminated composite plate,” J. Vibr. Acoust., vol. 140, no. 2, 021001, 2018. DOI: 10.1115/1.4037848.
  • C. Kumar Hirwani and S. Kumar Panda, “Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load,” Eng. Comput., vol. 36, no. 4, pp. 1201–1214, 2020. DOI: 10.1007/s00366-019-00757-6.
  • V. M. Sreehari, L. J. George and D. K. Maiti, “Bending and buckling analysis of smart composite plates with and without internal flaw using an inverse hyperbolic shear deformation theory,” Compos. Struct., vol. 138, pp. 64–74, 2016. DOI: 10.1016/j.compstruct.2015.11.045.
  • V. M. Sreehari and D. K. Maiti, “Buckling and post buckling characteristics of laminated composite plates with damage under thermo-mechanical loading,” Struct., vol. 6, pp. 9–19, 2016. DOI: 10.1016/j.istruc.2016.01.002.
  • S. Biswas, P. K. Datta and C. D. Kong, “Static and dynamic instability characteristics of curved laminates with internal damage subjected to follower loading,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., vol. 225, no. 7, pp. 1589–1600, 2011. DOI: 10.1177/0954406211399977.
  • P. K. Swain, B. Adhikari, D. K. Maiti and B. N. Singh, “Aeroelastic analysis of cnt reinforced functionally graded laminated composite plates with damage under subsonic regime,” Compos. Struct., vol. 222, p. 110916, 2019. DOI: 10.1016/j.compstruct.2019.110916.
  • H. Guo, T. Yang, K. Kamil Żur and J. N. Reddy, “On the flutter of matrix cracked laminated composite plates reinforced with graphene nanoplatelets,” Thin-Walled Struct., vol. 158, pp. 107161, 2021. DOI: 10.1016/j.tws.2020.107161.
  • Q. Wang, D. Wu, F. Tin-Loi and W. Gao, “Machine learning aided stochastic structural free vibration analysis for functionally graded bar-type structures,” Thin-Walled Struct., vol. 144, pp. 106315, 2019. DOI: 10.1016/j.tws.2019.106315.
  • P. K. Karsh, R. R. Kumar and S. Dey, “Stochastic impact responses analysis of functionally graded plates,” J Braz. Soc. Mech. Sci. Eng., vol. 41, no. 11, pp. 1–13, 2019. DOI: 10.1007/s40430-019-2000-8.
  • P. K. Karsh, T. Mukhopadhyay and S. Dey, “Stochastic dynamic analysis of twisted functionally graded plates,” Compos. Part B: Eng., vol. 147, pp. 259–278, 2018. DOI: 10.1016/j.compositesb.2018.03.043.
  • A. Kumar Rathi and A. Chakraborty, “Development of hybrid dimension adaptive sparse hdmr for stochastic finite element analysis of composite plate,” Compos. Struct., vol. 255, p. 112915, 2021. DOI: 10.1016/j.compstruct.2020.112915.
  • T Mukhopadhyay, PK Karsh, B Basu, S Dey, et al. Machine learning based stochastic dynamic analysis of functionally graded shells. Compos. Struct., vol. 237, p. 111870, 2020. DOI: 10.1016/j.compstruct.2020.111870.
  • M. Kamiński, “Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based finite element method,” Finite Elem. Anal. Des., vol. 200, p. 103648, 2022. DOI: 10.1016/j.finel.2021.103648.
  • A. Shaker, W. Abdelrahman, M. Tawfik and E. Sadek, “Stochastic finite element analysis of the free vibration of functionally graded material plates,” Comput. Mech., vol. 41, no. 5, pp. 707–714, 2008. DOI: 10.1007/s00466-007-0226-2.
  • R. Chandra Dash, N. Sharma, D. Kumar Maiti and B. N. Singh, “Uncertainty analysis of galloping based piezoelectric energy harvester system using polynomial neural network,” J. Intell. Mater. Syst. Struct., vol. 33, no. 16, pp. 2019–2032, 2022. DOI: 10.1177/1045389X211072519.
  • N. Sharma, P. K. Swain, D. K. Maiti and B. N. Singh, “Stochastic frequency analysis of laminated composite plate with curvilinear fiber,” Mech. Adv. Mater. Struct., vol. 29, no. 6, pp. 933–948, 2022. DOI: 10.1080/15376494.2020.1800152.
  • P. Chandrakar, N. Sharma and D. K. Maiti, “Stochastic buckling response of variable fiber spacing composite plate under thermal environment,” J. Compos. Mater., vol. 57, no. 24, pp. 3821–3839, 2023. DOI: 10.1177/00219983231191585.
  • P. Chandrakar, N. Sharma and D. K. Maiti, “Stochastic rbfn-based reliability estimation of variable fiber spacing composite plates under thermal loading,” Int. J. Adv. Eng. Sci. Appl. Math., pp. 1–9, 2023. DOI: 10.1007/s12572-023-00335-6.
  • P. Chandrakar, N. Sharma and D. K. Maiti, “Damage-induced buckling characteristics of thermally loaded variable angle tow laminated plates under uncertain environment,” Eur. J. Mech.- A/Solids, vol. 103, p. 105188, 2023. DOI: 10.1016/j.euromechsol.2023.105188.
  • N. Sharma, M. Nishad, D. Kumar Maiti, M. R. Sunny and B. N. Singh, “Uncertainty quantification in buckling strength of variable stiffness laminated composite plate under thermal loading,” Compos. Struct., vol. 275, p. 114486, 2021. DOI: 10.1016/j.compstruct.2021.114486.
  • P. K. Swain, N. Sharma, D. K. Maiti and B. N. Singh, “Aeroelastic analysis of laminated composite plate with material uncertainty,” J. Aerosp. Eng., vol. 33, no. 1, p. 04019111, 2020. DOI: 10.1061/(ASCE)AS.1943-5525.0001107.
  • N. Sharma, P. Kumar Swain and D. K. Maiti, “Uncertainty quantification in free vibration and aeroelastic response of variable angle tow laminated composite plate,” J. Compos. Mater., vol. 57, no. 17, pp. 2645–2668, 2023. DOI: 10.1177/00219983231175468.
  • A. Y. Tamijani and R. K. Kapania, “Buckling and static analysis of curvilinearly stiffened plates using mesh-free method,” AIAA J., vol. 48, no. 12, pp. 2739–2751, 2010. DOI: 10.2514/1.43917.
  • O. C. Zienkiewicz and R. L. Taylor, “Dedication,” in The Finite Element Method for Solid and Structural Mechanics, 7th ed., O. C. Zienkiewicz, R. L. Taylor, and D. Fox, Eds. Oxford: Butterworth-Heinemann, 2014, p. v. DOI: 10.1016/B978-1-85617-634-7.00020-X.
  • P. Van Vinh, N. Van Chinh and A. Tounsi, “Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and fem,” Eur. J. Mech.-A/Solids, vol. 96, p. 104743, 2022. DOI: 10.1016/j.euromechsol.2022.104743.
  • N. Sharma, P. Kumar Swain and D. K. Maiti, “Static and dynamic control of smart damaged variable stiffness laminated composite plate with piezoelectric layers,” in Mechanics Based Design Structures Machines. Taylor & Francis, 2023, pp. 1–25. DOI: 10.1080/15397734.2023.2203223.
  • B. N. Jha and H.-S Li, “Structural reliability analysis using a hybrid HDMR-ANN method,” J. Cent. South Univ., vol. 24, no. 11, pp. 2532–2541, 2017. DOI: 10.1007/s11771-017-3666-7.
  • X. Chai, Z. Sun, J. Wang, Y. Zhang and Z. Yu, “A new kriging-based learning function for reliability analysis and its application to fatigue crack reliability,” IEEE Access, vol. 7, pp. 122811–122819, 2019. DOI: 10.1109/ACCESS.2019.2936530.
  • R. Chowdhury, B. N. Rao and A. M. Prasad, “High-dimensional model representation for structural reliability analysis,” Commun. Numer. Methods Eng., vol. 25, no. 4, pp. 301–337, 2009. DOI: 10.1002/cnm.1118.
  • N. Sharma, P. Kumar Swain, D. Kumar Maiti and B. N. Singh, “Stochastic aeroelastic analysis of laminated composite plate with variable fiber spacing,” J. Compos. Mater., vol. 55, no. 30, pp. 4527–4547, 2021. DOI: 10.1177/00219983211040860.
  • R. Rackwitz and B. Flessler, “Structural reliability under combined random load sequences,” Comput. Struct., vol. 9, no. 5, pp. 489–494, 1978. DOI: 10.1016/0045-7949(78)90046-9.
  • S. Kumar, A. K. Onkar and M. Manjuprasad, “Stochastic modeling and reliability analysis of wing flutter,” J. Aerosp. Eng., vol. 33, no. 5, p. 04020044, 2020. DOI: 10.1061/(ASCE)AS.1943-5525.0001153.
  • H. Ounis, A. Tati and A. Benchabane, “Thermal buckling behavior of laminated composite plates: a finite-element study,” Front. Mech. Eng., vol. 9, no. 1, pp. 41–49, 2014. DOI: 10.1007/s11465-014-0284-z.
  • Y. Shi, R. Y. Y. Lee and C. Mei, “Thermal postbuckling of composite plates using the finite element modal coordinate method,” J. Therm. Stresses, vol. 22, no. 6, pp. 595–614, 1999.
  • L.-C. Shiau, S.-Y. Kuo and C.-Y. Chen, “Thermal buckling behavior of composite laminated plates,” Compos. Struct., vol. 92, no. 2, pp. 508–514, 2010. DOI: 10.1016/j.compstruct.2009.08.035.
  • H. R. H. Kabir, H. Askar and R. A. Chaudhuri, “Thermal buckling response of shear flexible laminated anisotropic plates using a three-node isoparametric element,” Compos. Struct., vol. 59, no. 2, pp. 173–187, 2003. DOI: 10.1016/S0263-8223(02)00237-4.
  • U. M. U. T. Topal and Ü. Uzman, “Thermal buckling load optimization of laminated composite plates,” Thin-Walled Struct., vol. 46, no. 6, pp. 667–675, 2008. DOI: 10.1016/j.tws.2007.11.005.
  • Y. Yan, A. Pagani and E. Carrera, “Thermal buckling solutions of generic metallic and laminated structures: total and updated Lagrangian formulations via refined beam elements,” J. Therm. Stresses, vol. 45, no. 8, pp. 669–694, 2022. DOI: 10.1080/01495739.2022.2090471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.