110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A new modified deep learning technique based on physics-informed neural networks (PINNs) for the shock-induced coupled thermoelasticity analysis in a porous material

&
Pages 798-825 | Received 05 Sep 2023, Accepted 11 Feb 2024, Published online: 10 Apr 2024

References

  • S. Rashidi, J. A. Esfahani and A. Rashidi, “A review on the applications of porous materials in solar energy systems,” Renew. Sustain. Energy Rev., vol. 73, pp. 1198–1210, Jun. 2017. DOI: 10.1016/j.rser.2017.02.028.
  • S. Rashidi, J. A. Esfahani and N. Karimi, “Porous materials in building energy technologies—A review of the applications, modelling and experiments,” Renew. Sustain. Energy Rev., vol. 91, pp. 229–247, Aug. 2018. DOI: 10.1016/j.rser.2018.03.092.
  • J. W. Nunziato and S. C. Cowin, “A nonlinear theory of elastic materials with voids,” Arch. Rational Mech. Anal., vol. 72, no. 2, pp. 175–201, Jun. 1979. DOI: 10.1007/BF00249363.
  • S. C. Cowin and J. W. Nunziato, “Linear elastic materials with voids,” J. Elasticity, vol. 13, no. 2, pp. 125–147, Jul. 1983. DOI: 10.1007/BF00041230.
  • D. Ieşan, “A theory of thermoelastic materials with voids,” Acta Mech., vol. 60, no. 1–2, pp. 67–89, Jun. 1986. DOI: 10.1007/BF01302942.
  • M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. DOI: 10.1063/1.1722351/title/thermoelasticity_and_irreversible_thermodynamics.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, Sep. 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity, vol. 2, no. 1, pp. 1–7, Mar. 1972. DOI: 10.1007/BF00045689.
  • . E. Green and P. M. Naghdi, “ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID,” J. Thermal Stresses, vol. 15, no. 2, pp. 253–264, Apr. 1992. DOI: 10.1080/01495739208946136.
  • A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity, vol. 31, no. 3, pp. 189–208, Jun. 1993. DOI: 10.1007/BF00044969.
  • C. Li, T. He and X. Tian, “Transient responses of nanosandwich structure based on size-dependent generalized thermoelastic diffusion theory,” J. Thermal Stresses, vol. 42, no. 9, pp. 1171–1191, Sep. 2019. DOI: 10.1080/01495739.2019.1623140.
  • C. Li, H. Guo and X. Tian, “Time-domain finite element analysis to nonlinear transient responses of generalized diffusion-thermoelasticity with variable thermal conductivity and diffusivity,” Int. J. Mech. Sci., vol. 131–132, pp. 234–244, Oct. 2017. DOI: 10.1016/j.ijmecsci.2017.07.008.
  • B. Singh, “On theory of generalized thermoelastic solids with voids and diffusion,” Eur. J. Mech. - A/Solids, vol. 30, no. 6, pp. 976–982, Nov. 2011. DOI: 10.1016/j.euromechsol.2011.06.007.
  • M. A. Ezzat, “Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer,” Phys. B Condens Matter., vol. 406, no. 1, pp. 30–35, Jan. 2011. DOI: 10.1016/j.physb.2010.10.005.
  • Y. J. Yu, X. G. Tian and T. J. Lu, “Fractional order generalized electro-magneto-thermo-elasticity,” Eur. J. Mech. - A/Solids, vol. 42, pp. 188–202, Nov. 2013. DOI: 10.1016/j.euromechsol.2013.05.006.
  • H. M. Youssef, “Theory of fractional order generalized thermoelasticity,” J. Heat Transf., vol. 132, no. 6, pp. 061301, Jun. 2010. DOI: 10.1115/1.4000705.
  • Y. Li, P. Zhang, C. Li and T. He, “Fractional order and memory-dependent analysis to the dynamic response of a bi-layered structure due to laser pulse heating,” Int. J. Heat Mass Transf., vol. 144, pp. 118664, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118664.
  • H. H. Sherief, A. M. A. El-Sayed and A. M. Abd El-Latief, “Fractional order theory of thermoelasticity,” Int. J. Solids Struct., vol. 47, no. 2, pp. 269–275, Jan. 2010. DOI: 10.1016/j.ijsolstr.2009.09.034.
  • Y.-J. Yu, W. Hu and X.-G. Tian, “A novel generalized thermoelasticity model based on memory-dependent derivative,” Int. J. Eng. Sci., vol. 81, pp. 123–134, Aug. 2014. DOI: 10.1016/j.ijengsci.2014.04.014.
  • Y. Li and T. He, “A generalized thermoelastic diffusion problem with memory-dependent derivative,” Math. Mech. Solids, vol. 24, no. 5, pp. 1438–1462, May 2019. DOI: 10.1177/1081286518797988.
  • T. He and Y. Li, “Transient responses of sandwich structure based on the generalized thermoelastic diffusion theory with memory-dependent derivative,” J. Sandw. Struct. Mater., vol. 22, no. 8, pp. 2505–2543, Nov. 2020. DOI: 10.1177/1099636218802574.
  • A. Behravan Rad and M. Shariyat, “Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations,” Compos. Struct., vol. 125, pp. 558–574, Jul. 2015. DOI: 10.1016/j.compstruct.2015.02.049.
  • M. M. Alipour and M. Shariyat, “Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores,” Arch. Civil Mech. Eng., vol. 19, no. 4, pp. 1211–1234, Aug. 2019. DOI: 10.1016/j.acme.2019.06.008.
  • Y. J. Yu, Z.-N. Xue and X.-G. Tian, “A modified Green–Lindsay thermoelasticity with strain rate to eliminate the discontinuity,” Meccanica, vol. 53, no. 10, pp. 2543–2554, Aug. 2018. DOI: 10.1007/s11012-018-0843-1.
  • S. He, W. Peng, Y. Ma and T. He, “Investigation on the transient response of a porous half-space with strain and thermal relaxations,” Eur. J. Mech. - A/Solids, vol. 84, pp. 104064, Nov. 2020. DOI: 10.1016/j.euromechsol.2020.104064.
  • S. He and T. He, “Investigation on the transient response of a porous half-space with strain and thermal relaxations due to laser pulse heating,” Waves Random Complex Media, vol. 34, no. 2, pp. 601–625, Apr. 2024. DOI: 10.1080/17455030.2021.1916126.
  • Z. Qi, W. Peng and T. He, “Investigation on the thermoelastic response of a nanobeam in modified couple stress theory considering size-dependent and memory-dependent effects,” J. Thermal Stresses, vol. 45, no. 10, pp. 773–792, Oct. 2022. DOI: 10.1080/01495739.2022.2109543.
  • M. Raissi, P. Perdikaris and G. E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys., vol. 378, pp. 686–707, Feb. 2019. DOI: 10.1016/j.jcp.2018.10.045.
  • Q. Zhu, Z. Liu and J. Yan, “Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks,” Comput. Mech., vol. 67, no. 2, pp. 619–635, Feb. 2021. DOI: 10.1007/s00466-020-01952-9.
  • X. Jin, S. Cai, H. Li and G. E. Karniadakis, “NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations,” J. Comput. Phys., vol. 426, pp. 109951, Feb. 2021. DOI: 10.1016/j.jcp.2020.109951.
  • T. Kadeethum, T. M. Jørgensen and H. M. Nick, “Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations,” PLoS One vol. 15, no. 5, pp. e0232683, May 2020. DOI: 10.1371/journal.pone.0232683.
  • L. Sun, H. Gao, S. Pan and J. X. Wang, “Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data,” Comput. Methods Appl. Mech. Eng., vol. 361, pp. 112732, Apr. 2020. DOI: 10.1016/j.cma.2019.112732.
  • A. Mathews, M. Francisquez, J. W. Hughes, D. R. Hatch, B. Zhu and B. N. Rogers, “Uncovering turbulent plasma dynamics via deep learning from partial observations,” Phys. Rev. E, vol. 104, no. 2–2, pp. 025205, Aug. 2021. DOI: 10.1103/PhysRevE.104.025205.
  • C. Cheng and G. T. Zhang, “Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems,” Water (Basel, vol. 13, no. 4, pp. 423, Feb. 2021. DOI: 10.3390/w13040423.
  • Z. Mao, A. D. Jagtap and G. E. Karniadakis, “Physics-informed neural networks for high-speed flows,” Comput. Methods Appl. Mech. Eng., vol. 360, pp. 112789, Mar. 2020. DOI: 10.1016/j.cma.2019.112789.
  • T. Zhou, E. L. Droguett and A. Mosleh, “Physics-informed deep learning: a promising technique for system reliability assessment,” Appl. Soft Comput., vol. 126, pp. 109217, Sep. 2022. DOI: 10.1016/j.asoc.2022.109217.
  • T. Zhou, X. Zhang, E. L. Droguett and A. Mosleh, “A generic physics-informed neural network-based framework for reliability assessment of multi-state systems,” Reliab. Eng. Syst. Saf., vol. 229, pp. 108835, Jan. 2023. DOI: 10.1016/j.ress.2022.108835.
  • C. Zhang and A. Shafieezadeh, “Simulation-free reliability analysis with active learning and physics-informed neural network,” Reliab. Eng. Syst. Saf., vol. 226, pp. 108716, Oct. 2022. DOI: 10.1016/j.ress.2022.108716.
  • M. Sepe et al., “A physics-informed machine learning framework for predictive maintenance applied to turbomachinery assets,” J. Glob. Power Propuls. Soc., pp. 1–15, May 2021. DOI: 10.33737/jgpps/134845.
  • S. Shen et al., “A physics-informed deep learning approach for bearing fault detection,” Eng. Appl. Artif. Intell., vol. 103, pp. 104295, Aug. 2021. DOI: 10.1016/j.engappai.2021.104295.
  • A. D. J and G. E. Karniadakis, “Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations,” CiCP, vol. 28, no. 5, pp. 2002–2041, Jun. 2020. DOI: 10.4208/cicp.OA-2020-0164.
  • L. Yang, X. Meng and G. E. Karniadakis, “B-PINNs: bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data,” J. Comput. Phys., vol. 425, pp. 109913, Jan. 2021. DOI: 10.1016/j.jcp.2020.109913.
  • A. D. Jagtap, E. Kharazmi and G. E. Karniadakis, “Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems,” Comput. Methods Appl. Mech. Eng., vol. 365, pp. 113028, Jun. 2020. DOI: 10.1016/j.cma.2020.113028.
  • E. Haghighat and R. Juanes, “SciANN: a Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks,” Comput. Methods Appl. Mech. Eng., vol. 373, pp. 113552, Jan. 2021. DOI: 10.1016/j.cma.2020.113552.
  • M. Liu, L. Liang and W. Sun, “A generic physics-informed neural network-based constitutive model for soft biological tissues,” Comput. Methods Appl. Mech. Eng., vol. 372, pp. 113402, Dec. 2020. DOI: 10.1016/j.cma.2020.113402.
  • A. Yazdani, L. Lu, M. Raissi and G. E. Karniadakis, “Systems biology informed deep learning for inferring parameters and hidden dynamics,” PLoS Comput. Biol., vol. 16, no. 11, pp. e1007575, Nov. 2020. DOI: 10.1371/journal.pcbi.1007575.
  • M. Raissi, A. Yazdani and G. E. Karniadakis, “Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations,” Science, vol. 367, no. 6481, pp. 1026–1030, Feb. 2020. DOI: 10.1126/science.aaw4741.
  • A. D. Jagtap, D. Mitsotakis and G. E. Karniadakis, “Deep learning of inverse water waves problems using multi-fidelity data: application to Serre–Green–Naghdi equations,” Ocean Eng., vol. 248, pp. 110775, Mar. 2022. DOI: 10.1016/j.oceaneng.2022.110775.
  • K. Shukla, A. D. Jagtap, J. L. Blackshire, D. Sparkman and G. Em Karniadakis, “A physics-informed neural network for quantifying the microstructural properties of polycrystalline nickel using ultrasound data: a promising approach for solving inverse problems,” IEEE Signal Proc. Mag., vol. 39, no. 1, pp. 68–77, Jan. 2022. DOI: 10.1109/MSP.2021.3118904.
  • A. D. Jagtap, Z. Mao, N. Adams and G. E. Karniadakis, “Physics-informed neural networks for inverse problems in supersonic flows,” J. Comput. Phys., vol. 466, pp. 111402, Oct. 2022. DOI: 10.1016/j.jcp.2022.111402.
  • E. Haghighat, M. Raissi, A. Moure, H. Gomez and R. Juanes, “A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics,” Comput. Methods Appl. Mech. Eng., vol. 379, pp. 113741, Jun. 2021. DOI: 10.1016/j.cma.2021.113741.
  • M. Rasht‐Behesht, C. Huber, K. Shukla and G. E. Karniadakis, “Physics‐informed neural networks (PINNs) for wave propagation and full waveform inversions,” JGR Solid Earth, vol. 127, no. 5, pp. e2021JB023120, May 2022. DOI: 10.1029/2021JB023120.
  • W. Li, M. Z. Bazant and J. Zhu, “A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches,” Comput. Methods Appl. Mech. Eng., vol. 383, pp. 113933, Sep. 2021. DOI: 10.1016/j.cma.2021.113933.
  • A. Habib and U. Yildirim, “Developing a physics-informed and physics-penalized neural network model for preliminary design of multi-stage friction pendulum bearings,” Eng. Appl. Artif. Intell., vol. 113, pp. 104953, Aug. 2022. DOI: 10.1016/j.engappai.2022.104953.
  • H. Guo, X. Zhuang, X. Fu, Y. Zhu and T. Rabczuk, “Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials,” Comput. Mech., vol. 72, no. 3, pp. 513–524, Apr. 2023. DOI: 10.1007/s00466-023-02287-x.
  • K. Shukla, P. C. Di Leoni, J. Blackshire, D. Sparkman and G. E. Karniadakis, “Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks,” J. Nondestruct. Eval., vol. 39, no. 3, pp. 61, Sep. 2020. DOI: 10.1007/s10921-020-00705-1.
  • C. Rao, H. Sun and Y. Liu, “Physics-informed deep learning for computational elastodynamics without labeled data,” J. Eng. Mech., vol. 147, no. 8, pp. 04021043, Aug. 2021. DOI: 10.1061/(ASCE)EM.1943-7889.0001947.
  • A. Fallah and M. M. Aghdam, “Physics-informed neural network for bending and free vibration analysis of three-dimensional functionally graded porous beam resting on elastic foundation,” Eng. Comput., vol. 40, no. 1, pp. 437–454, Mar. 2023. DOI: 10.1007/s00366-023-01799-7.
  • K. Shukla, A. D. Jagtap and G. E. Karniadakis, “Parallel physics-informed neural networks via domain decomposition,” J. Comput. Phys., vol. 447, pp. 110683, Dec. 2021. DOI: 10.1016/j.jcp.2021.110683.
  • M. Penwarden, A. D. Jagtap, S. Zhe, G. E. Karniadakis and R. M. Kirby, “A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions,” J. Comput. Phys., vol. 493, pp. 112464, Nov. 2023. DOI: 10.1016/j.jcp.2023.112464.
  • Z. Hu, A. D. Jagtap, G. E. Karniadakis and K. Kawaguchi, “Augmented Physics-Informed Neural Networks (APINNs): a gating network-based soft domain decomposition methodology,” Eng. Appl. Artif. Intell., vol. 126, pp. 107183, Nov. 2023. DOI: 10.1016/j.engappai.2023.107183.
  • B. Zhang, G. Wu, Y. Gu, X. Wang and F. Wang, “Multi-domain physics-informed neural network for solving forward and inverse problems of steady-state heat conduction in multilayer media,” Phys. Fluids, vol. 34, no. 11, pp. 116116, Nov. 2022. DOI: 10.1063/5.0116038.
  • B. Zhang, F. Wang and L. Qiu, “Multi-domain physics-informed neural networks for solving transient heat conduction problems in multilayer materials,” J. Appl. Phys., vol. 133, no. 24, pp. 245103, Jun. 2023. DOI: 10.1063/5.0153705.
  • G. Wu, F. Wang and L. Qiu, “Physics-informed neural network for solving Hausdorff derivative poisson equations,” Fractals, vol. 31, no. 06, pp. 2340103, Jan. 2023. DOI: 10.1142/S0218348X23401035.
  • S. Mishra and R. Molinaro, “Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs,” IMA J. Numer. Anal., vol. 42, no. 2, pp. 981–1022, Apr. 2022. DOI: 10.1093/imanum/drab032.
  • T. De Ryck, A. D. Jagtap and S. Mishra, “Error estimates for physics-informed neural networks approximating the Navier–Stokes equations,” IMA J. Numer. Anal., vol. 44, no. 1, pp. 83–119, Jan. 2023. DOI: 10.1093/imanum/drac085.
  • Z. Hu, A. D. Jagtap, G. E. Karniadakis and K. Kawaguchi, “When do extended physics-informed neural networks (XPINNs) improve generalization,” SIAM J. Sci. Comput., vol. 44, no. 5, pp. A3158–A3182, Oct. 2022. DOI: 10.1137/21M1447039.
  • A. D. Jagtap, K. Kawaguchi and G. E. Karniadakis, “Adaptive activation functions accelerate convergence in deep and physics-informed neural networks,” J. Comput. Phys., vol. 404, pp. 109136, Mar. 2020. DOI: 10.1016/j.jcp.2019.109136.
  • A. D. Jagtap, K. Kawaguchi and G. Em Karniadakis, “Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks,” Proc. Math. Phys. Eng. Sci., vol. 476, no. 2239, pp. 20200334, Jul. 2020. DOI: 10.1098/rspa.2020.0334.
  • A. D. Jagtap, Y. Shin, K. Kawaguchi and G. E. Karniadakis, “Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions,” Neurocomputing, vol. 468, pp. 165–180, Jan. 2022. DOI: 10.1016/j.neucom.2021.10.036.
  • A. D. Jagtap and G. E. Karniadakis, “How important are activation functions in regression and classification? a survey, performance comparison, and future directions,” J. Mach. Learn. Model. Comput., vol. 4, no. 1, pp. 21–75, 2023. DOI: 10.1615/JMachLearnModelComput.2023047367.
  • K. Eshkofti and S. M. Hosseini, “A deep learning approach based on the physics-informed neural networks for Gaussian thermal shock-induced thermoelastic wave propagation analysis in a thick hollow cylinder with energy dissipation,” Waves Random Complex Media, pp. 1–40, Jun. 2022. DOI: 10.1080/17455030.2022.2083264.
  • K. Eshkofti and S. M. Hosseini, “The novel PINN/gPINN-based deep learning schemes for non-Fickian coupled diffusion-elastic wave propagation analysis,” Waves Random Complex Media, pp. 1–24, Feb. 2023. DOI: 10.1080/17455030.2023.2177499.
  • K. Eshkofti and S. M. Hosseini, “A gradient-enhanced physics-informed neural network (gPINN) scheme for the coupled non-fickian/non-fourierian diffusion-thermoelasticity analysis: A novel gPINN structure,” Eng. Appl. Artif. Intell., vol. 126, pp. 106908, Nov. 2023. DOI: 10.1016/j.engappai.2023.106908.
  • S. Shi, D. Liu and Z. Huo, “Simulation of thermoelastic coupling in silicon single crystal growth based on alternate two-stage physics-informed neural network,” Eng. Appl. Artif. Intell., vol. 123, pp. 106468, Aug. 2023. DOI: 10.1016/j.engappai.2023.106468.
  • C. Wu, M. Zhu, Q. Tan, Y. Kartha and L. Lu, “A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks,” Comput. Methods Appl. Mech. Eng., vol. 403, pp. 115671, Jan. 2023. DOI: 10.1016/j.cma.2022.115671.
  • S. Wang, Y. Teng and P. Perdikaris, “Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks,” SIAM J. Sci. Comput., vol. 43, no. 5, pp. A3055–A3081, Jan. 2021. DOI: 10.1137/20M1318043.
  • M. Bachher, N. Sarkar and A. Lahiri, “Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources,” Meccanica, vol. 50, no. 8, pp. 2167–2178, Aug. 2015. DOI: 10.1007/s11012-015-0152-x.
  • M. A. Nabian, R. J. Gladstone and H. Meidani, “Efficient training of physics‐informed neural networks via importance sampling,” Comput. Aided Civil Eng., vol. 36, no. 8, pp. 962–977, Aug. 2021. DOI: 10.1111/mice.12685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.