85
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Electron and phonon temperatures: Application to the thermal-shock propagation in nanowires

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 553-580 | Received 13 Sep 2023, Accepted 25 Dec 2023, Published online: 12 Mar 2024

References

  • M. Zhang, et al., “Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions,” Nanoscale, vol. 2, no. 12, pp. 2790–2797, 2010. DOI: 10.1039/c0nr00585a.
  • G. Meng, et al., “Nanoscale thermal management of single SnO2 nanowire: Pico-Joule Energy Consumed Molecule Sensor,” ACS Sens., vol. 1, no. 8, pp. 997–1002, 2016. DOI: 10.1021/acssensors.6b00364.
  • R. Qin, K. Liu, Q. Wu and N. Zheng, “Surface coordination chemistry of atomically dispersed metal catalysts,” Chem. Rev., vol. 120, no. 21, pp. 11810–11899, 2020. DOI: 10.1021/acs.chemrev.0c00094.
  • C. Lucchesi, R. Vaillon and P.-O. Chapuis, “Radiative heat transfer at the nanoscale: experimental trends and challenges,” Nanoscale Horiz., vol. 6, no. 3, pp. 201–208, 2021. DOI: 10.1039/d0nh00609b.
  • W.-J. Ong, N. Zheng and M. Antonietti, “Advanced nanomaterials for energy conversion and storage: current status and future opportunities,” Nanoscale, vol. 13, no. 22, pp. 9904–9907, 2021. DOI: 10.1039/d1nr90103f.
  • P. S. Banks, B. C. Stuart, A. M. Komashko, M. D. Feit, A. M. Rubenchik and M. D. Perry, “Femtosecond laser materials processing,” in Proc. SPIE, Commercial and Biomedical Applications of Ultrafast Lasers II, Joseph Neev and Murray K. Reed, Eds. vol. 3934, SPIE, 2000, pp. 14–21.
  • J. Roth, et al., “Molecular dynamics simulations studies of laser ablation in metals,” AIP Conf. Proc., vol. 1464, pp. 504–523, 2012.
  • B. Rethfeld, A. Kaiser, M. Vicanek and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B, vol. 65, no. 21, pp. 214303, 2002. DOI: 10.1103/PhysRevB.65.214303.
  • D. Jou, A. Sellitto and V. A. Cimmelli, “Phonon temperature and electron temperature in thermoelectric coupling,” J. Non-Equilib. Thermodyn, vol. 38, pp. 335–361, 2013.
  • D. Jou, A. Sellitto and V. A. Cimmelli, “Multi-temperature mixture of phonons and electrons and nonlocal thermoelectric transport in thin layers,” Int. J. Heat Mass Transfer, vol. 71, pp. 459–468, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.030.
  • S. L. Sobolev, “Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses,” Int. J. Heat Mass Transfer, vol. 94, pp. 138–144, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.11.075.
  • L. Jiang and H.-L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer – T. ASME, vol. 127, no. 10, pp. 1167–1173, 2005. DOI: 10.1115/1.2035113.
  • J. K. Chen, D. Y. Tzou and J. E. Beraun, “A semiclassical two-temperature model for ultrafast laser heating,” Int. J. Heat Mass Transfer, vol. 49, no. 1–2, pp. 307–316, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.06.022.
  • P. E. Hopkins, P. M. Norris, L. M. Phinney, S. A. Policastro and R. G. Kelly, “Thermal conductivity in nanoporous gold films during electron-phonon nonequilibrium,” J. Nanomaterials, vol. 2008, pp. 1–7, 2008. DOI: 10.1155/2008/418050.
  • A. Sellitto, V. A. Cimmelli and D. Jou, “Influence of electron and phonon temperature on the efficiency of thermoelectric conversion,” Int. J. Heat Mass Transfer, vol. 80, pp. 344–352, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.032.
  • A. Sellitto, “Phonon- and electron-temperature waves in a Maxwell-Cattaneo heat-conduction theory,” J. Thermal Stresses, vol. 44, no. 1, pp. 1–19, 2021. DOI: 10.1080/01495739.2020.1820922.
  • S. Grauby, B. Vidal Montes, A. Zenji, J.-M. Rampnoux and S. Dilhaire, “How to measure hot electron and phonon temperatures with time domain thermoreflectance spectroscopy?” ACS Photonics, vol. 9, no. 11, pp. 3734–3744, 2022. DOI: 10.1021/acsphotonics.2c01361.
  • G. Chen, Nanoscale Energy Transport and Conversion – A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford: Oxford University Press, 2005.
  • I. Carlomagno, M. Di Domenico and A. Sellitto, “High-order fluxes in heat transfer with phonons and electrons: Application to wave propagation,” Proc. R. Soc. A, vol. 477, no. 2253, p. 20210392, 2021. DOI: 10.1098/rspa.2021.0392.
  • N. Stojanovic, D. H. S. Maithripala, J. M. Berg and M. Holtz, “Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law,” Phys. Rev. B, vol. 82, no. 7, p. 075418, 2010. DOI: 10.1103/PhysRevB.82.075418.
  • A. Majumdar and P. Reddy, “Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces,” J. Appl. Phys., vol. 84, no. 23, pp. 4768–4770, 2004. DOI: 10.1063/1.1758301.
  • M. I. Kaganov, I. M. Lifshitz and M. V. Tanatarov, “Relaxation between electrons and crystalline lattices,” Sov. Phys. JETP, vol. 4, pp. 173, 1957.
  • Z. Lin, L. V. Zhigilei and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B, vol. 77, no. 7, p. 075133, 2008. DOI: 10.1103/PhysRevB.77.075133.
  • M. Murat, A. Akkerman and J. Barak, “Ion track structure and dynamics in Si.”
  • A. Chettah, H. Kucal, Z. G. Wang, M. Kac, A. Meftah and M. Toulemonde, “Behavior of crystalline silicon under huge electronic excitations: A transient thermal spike description,” Nucl. Instrum. Methods Phys. Res. B, vol. 267, no. 16, pp. 2719–2724, 2009. DOI: 10.1016/j.nimb.2009.05.063.
  • D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behaviour, 2nd ed. United Kingdom: Wiley, 2014.
  • G. Mascali and V. Romano, “Charge transport in graphene including thermal effects,” SIAM J. Appl. Math., vol. 77, no. 2, pp. 593–613, 2017. DOI: 10.1137/15M1052573.
  • G. Mascali and V. Romano, “A hierarchy of macroscopic models for phonon transport in graphene,” Physica A, vol. 548, pp. 124489–13, 2020. DOI: 10.1016/j.physa.2020.124489.
  • D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics, 4th ed. Berlin: Springer, 2010,
  • R. Kovács and P. Ván, “Generalized heat conduction in heat pulse experiments,” Int. J. Heat Mass Transfer, vol. 83, pp. 613–620, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.12.045.
  • A. Barletta and E. Zanchini, “Unsteady heat conduction by internal-energy waves in solids,” Phys. Rev. B, vol. 55, no. 21, pp. 14208–5, 1997. DOI: 10.1103/PhysRevB.55.14208.
  • E. Zanchini, “Hyperbolic heat-conduction theories and nondecreasing entropy,” Phys. Rev. B, vol. 60, no. 2, pp. 991–997, 1999. DOI: 10.1103/PhysRevB.60.991.
  • S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim and T. F. Heinz, “Electron and optical phonon temperatures in electrically biased graphene,” Phys Rev Lett., vol. 104, no. 22, p. 227401, 2010. DOI: 10.1103/PhysRevLett.104.227401.
  • M. Schreier, et al., “Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures,” Phys. Rev. B, vol. 88, no. 9, p. 094410, 2013. DOI: 10.1103/PhysRevB.88.094410.
  • N. Balkan, Hot Electrons in Semiconductors – Physics and Devices, Oxford: Clarendon Press, 1998.
  • Y. Dubi and Y. Sivan, “Hot” electrons in metallic nanostructures-on-thermal carriers or heating?,” Light Sci Appl., vol. 8, no. 1, p. 89, 2019. DOI: 10.1038/s41377-019-0199-x.
  • G. Lebon, D. Jou and J. Casas-Vázquez, Understanding Non-Equilibrium Thermodynamics, Berlin: Springer, 2008.
  • S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics, Amsterdam: North-Holland Publishing Company, 1962.
  • C. D’Apice, S. Chiriţă and V. Zampoli, “On the well-posedness of the time differential three-phase-lag thermoelasticity model,” Arch. Mech., vol. 68, pp. 371–393, 2016.
  • A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44 of Applied Mathematical Sciences, New York, NY: Springer-Verlag, 1983.
  • R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. Yang and A. Majumdar, “Thermal conductance of thin silicon nanowires,” Phys Rev Lett., vol. 101, no. 10, pp. 105501, 2008. DOI: 10.1103/PhysRevLett.101.105501.
  • D. G. Cahill, et al., “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev., vol. 1, no. 1, p. 011305, 2014. DOI: 10.1063/1.4832615.
  • P. M. Jordan, Acoustics Div., U.S. Naval Research Laboratory, Stennis Space Ctr., MS 39529., “Second-sound phenomena in inviscid, thermally relaxing gases,” Discrete Contin. Dyn. Syst. – B, vol. 19, no. 7, pp. 2189–2205, 2014. DOI: 10.3934/dcdsb.2014.19.2189.
  • K. Maruyama, F. Nori and V. Vedral, “Colloquium: the physics of Maxwell’s demon and information,” Rev. Mod. Phys., vol. 81, no. 1, pp. 1–23, 2009. DOI: 10.1103/RevModPhys.81.1.
  • G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles and D. J. Evans, “Experimental Demonstration of violations of the second law of thermodynamics for small systems and short time scales,” Phys Rev Lett., vol. 89, no. 5, p. 050601, 2002. DOI: 10.1103/PhysRevLett.89.050601.
  • J. Gieseler, R. Quidant, C. Dellago and L. Novotny, “Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state,” Nat Nanotechnol., vol. 9, no. 5, pp. 358–364, 2014. DOI: 10.1038/nnano.2014.40.
  • R. Luzzi, A. R. Vasconcellos, J. Casas-Vázquez and D. Jou, “Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics,” Physica A, vol. 234, no. 3-4, pp. 699–714, 1997. DOI: 10.1016/S0378-4371(96)00303-2.
  • J. M. Criado-Sancho, D. Jou and J. Casas-Vázquez, “Nonequilibrium kinetic temperatures in flowing gases,” Phys. Lett. A, vol. 350, no. 5–6, pp. 339–341, 2006. DOI: 10.1016/j.physleta.2005.10.043.
  • J. B. Lee, K. Kang and S. H. Lee, “Comparison of theoretical models of electron-phonon coupling in thin gold films irradiated by femtosecond pulse lasers,” Mater. Trans., vol. 52, no. 3, pp. 547–553, 2011. DOI: 10.2320/matertrans.M2010396.
  • R. Cuscó, et al., “Temperature dependence of Raman scattering in ZnO,” Phys. Rev. B, vol. 75, no. 16, p. 165202, 2007. DOI: 10.1103/PhysRevB.75.165202.
  • A. Sellitto, F. X. Alvarez and D. Jou, “Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires,” J. Appl. Phys., vol. 107, pp. 114312–7, 2010. DOI: 10.1063/1.3431348.
  • A. Sellitto, F. X. Alvarez and D. Jou, “Phonon-wall interactions and frequency-dependent thermal conductivity in nanowires,” J. Appl. Phys., vol. 109, p. 064317, 2011. DOI: 10.1063/1.3565138.
  • J. Mao, Y. Wang, Z. Liu, B. Ge and Z. Ren, “Phonon scattering by nanoscale twin boundaries,” Nano Energy, vol. 32, pp. 174–179, 2017. DOI: 10.1016/j.nanoen.2016.12.026.
  • J. K. Chen and J. E. Beraun, “Numerical study of ultrashort laser pulse interactions with metal films,” Numer. Heat Transfer A, vol. 40, pp. 1–20, 2001.
  • R. A. Guyer and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., vol. 148, no. 2, pp. 766–778, 1966. DOI: 10.1103/PhysRev.148.766.
  • R. A. Guyer and J. A. Krumhansl, “Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals,” Phys. Rev., vol. 148, no. 2, pp. 778–788, 1966. DOI: 10.1103/PhysRev.148.778.
  • M. Di Domenico, D. Jou and A. Sellitto, “Nonlinear heat waves and some analogies with nonlinear optics,” Int. J. Heat Mass Transfer, vol. 156, pp. 119888–8, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119888.
  • M. Di Domenico, D. Jou and A. Sellitto, “Heat-flux dependence of the speed of nonlinear heat waves: analogies with the Kerr effect in nonlinear optics,” Int. J. Therm. Sci., vol. 161, pp. 106719–8, 2021. DOI: 10.1016/j.ijthermalsci.2020.106719.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.