65
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermoacoustic performance of 100 kHz wide-band packaged projector in water tank with three-dimensional graphene

, , , , &
Pages 489-501 | Received 11 Apr 2023, Accepted 11 Feb 2024, Published online: 12 Mar 2024

References

  • Z. L. Ngoh, et al., “Experimental characterization of three-dimensional Graphene’s thermoacoustic response and its theoretical modelling,” Carbon, vol. 169, pp. 382–394, Nov. 2020. DOI: 10.1016/j.carbon.2020.06.045.
  • H. Li, Z. D. Deng and T. J. Carlson, “Piezoelectric materials used in underwater acoustic transducers,” Sens. Lett., vol. 10, no. 3, pp. 679–697, Mar. 2012. DOI: 10.1166/sl.2012.2597.
  • P. Guiraud, S. Giordano, O. Bou Matar, P. Pernod and R. Lardat, “Thermoacoustic wave generation in multilayered thermophones with cylindrical and spherical geometries,” J. Appl. Phys., vol. 129, no. 11, pp. 115103, Mar. 2021. DOI: 10.1063/5.0039458.
  • H. D. Arnold and I. B. Crandall, “The thermophone as a precision source of sound,” Phys. Rev., vol. 10, no. 1, pp. 22–38, Jul. 1917. DOI: 10.1103/PhysRev.10.22.
  • A. E. Aliev, Y. N. Gartstein and R. H. Baughman, “Increasing the efficiency of thermoacoustic carbon nanotube sound projectors,” Nanotechnology, vol. 24, no. 23, pp. 235501, May 2013. DOI: 10.1088/0957-4484/24/23/235501.
  • A. E. Aliev, M. D. Lima, S. Fang and R. H. Baughman, “Underwater sound generation using carbon nanotube projectors,” Nano Lett., vol. 10, no. 7, pp. 2374–2380, Jul. 2010. DOI: 10.1021/nl100235n.
  • L. Xiao, et al., “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett, vol. 8, no. 12, pp. 4539–4545, Dec. 2008. DOI: 10.1021/nl802750z.
  • V. Vesterinen, A. O. Niskanen, J. Hassel and P. Helistö, “Fundamental efficiency of nanothermophones: modeling and experiments,” Nano Lett., vol. 10, no. 12, pp. 5020–5024, Dec. 2010. DOI: 10.1021/nl1031869.
  • A. O. Niskanen, J. Hassel, M. Tikander, P. Maijala, L. Grönberg and P. Helistö, “Suspended metal wire array as a thermoacoustic sound source,” Appl. Phys. Lett., vol. 95, no. 16, pp. 163102, Oct. 2009. DOI: 10.1063/1.3249770.
  • H. Tian, et al., “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett., vol. 99, no. 25, pp. 253507, Dec. 2011. DOI: 10.1063/1.3671332.
  • R. Dutta, et al., “Gold nanowire thermophones,” J. Phys. Chem. C, vol. 118, no. 50, pp. 29101–29107, Dec. 2014. DOI: 10.1021/jp504195v.
  • H. Yi, Thermally Driven Sound Source: Application of CNT Nanofoams, TU Delft, 2015. [Online]. Available: http://resolver.tudelft.nl/uuid:0b559d5b-66d1-4b61-a6c2-594307d55f31
  • W. Xu, Z. Zhou, Z. Tong, C. W. Lim and X. Xu, “Acoustic response characterization of thermoacoustic CNT thin film arrays,” J. Therm. Stress., vol. 41, no. 10–12, pp. 1525–1537, Dec. 2018. DOI: 10.1080/01495739.2018.1520622.
  • L. H. Tong, C. W. Lim, S. K. Lai and Y. C. Li, “Gap separation effect on thermoacoustic wave generation by heated suspended CNT nano-thinfilm,” Appl. Therm. Eng., vol. 86, pp. 135–142, Jul. 2015. DOI: 10.1016/j.applthermaleng.2015.04.031.
  • A. E. Aliev, et al., “Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source,” Nanotechnology, vol. 25, no. 40, pp. 405704, Oct. 2014. DOI: 10.1088/0957-4484/25/40/405704.
  • W. Fei, J. Zhou and W. Guo, “Low-voltage driven graphene foam thermoacoustic speaker,” Small, vol. 11, no. 19, pp. 2252–2256, 2015. DOI: 10.1002/smll.201402982.
  • K.-R. Lee, S. H. Jang and I. Jung, “Analysis of acoustical performance of Bi-layer graphene and graphene-foam-based thermoacoustic sound generating devices,” Carbon, vol. 127, pp. 13–20, Feb. 2018. DOI: 10.1016/j.carbon.2017.10.078.
  • C. S. Kim, K. E. Lee, J.-M. Lee, S. O. Kim, B. J. Cho and J.-W. Choi, “Application of N-doped three-dimensional reduced graphene oxide aerogel to thin film loudspeaker,” ACS Appl. Mater Interfaces, vol. 8, no. 34, pp. 22295–22300, Aug. 2016. DOI: 10.1021/acsami.6b03618.
  • Z. L. Ngoh, et al., “Boron nitride coated three-dimensional graphene as an electrically insulating electromagnetic interference shield,” in 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Bochum, Germany, Jul.2019, pp. 127–129. DOI: 10.1109/IMWS-AMP.2019.8880119.
  • M. Loeblein, et al., “High-density 3D-boron nitride and 3D-graphene for high-performance nano–thermal interface material,” ACS Nano, vol. 11, no. 2, pp. 2033–2044, Feb. 2017. DOI: 10.1021/acsnano.6b08218.
  • W. H. Li, et al., “Thermal conductivity enhancement and shape stabilization of phase-change materials using three-dimensional graphene and graphene powder,” Energy Fuels, vol. 34, no. 2, pp. 2435–2444, Feb. 2020. DOI: 10.1021/acs.energyfuels.9b03013.
  • S. Lai-Iskandar, W. H. Li, S. H. Tsang, Y. H. Lee and E. H. T. Teo, “Programmable morphing, electroactive porous shape memory polymer composites with battery-voltage Joule heating stimulated recovery,” Appl. Mater., vol. 10, no. 7, pp. 071109, Jul. 2022. DOI: 10.1063/5.0093683.
  • Q. Yao and L. Bjørnø, “Broadband Tonpilz underwater acoustic transducers based on multimode optimization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, no. 5, pp. 1060–1066, Sep. 1997. DOI: 10.1109/58.655631.
  • J. George, D. D. Ebenezer and S. K. Bhattacharyya, “Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating,” J. Acoust. Soc. Am., vol. 128, no. 4, pp. 10, 2010.
  • L. Bjørnø, “Chapter 10 - Sonar Systems,” in Applied Underwater Acoustics, Elsevier, 2017, pp. 587–742. DOI: 10.1016/B978-0-12-811240-3.00010-2.
  • “Piezoelectric Tonpilz Transducer.” Accessed: Nov. 11, 2022. [Online]. Available: https://www.comsol.com/model/piezoelectric-tonpilz-transducer-11478
  • M. Bakhtiari-Nejad, M. R. Hajj and S. Shahab, “Dynamics of acoustic impedance matching layers in contactless ultrasonic power transfer systems,” Smart Mater. Struct., vol. 29, no. 3, pp. 035037, Mar. 2020. DOI: 10.1088/1361-665X/ab6fe5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.