50
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Three-dimensional thermoelastic analysis of functionally graded solids using a high-order staggered finite volume method

, , , , &
Pages 447-473 | Received 21 Nov 2022, Accepted 29 Oct 2023, Published online: 12 Mar 2024

References

  • D. Gayen, D. Chakraborty, and R. Tiwari, 2020, “Determination of local flexibility coefficients of a functionally graded shaft with breathing crack,” in Advances in Rotor Dynamics, Control, and Structural Health Monitoring, S. Dutta, E. Inan, and S. K. Dwivedy, Eds. Singapore: Springer Singapore, pp. 171–187.
  • A. J. Markworth, K. S. Ramesh, and W. P. Parks, “Modelling studies applied to functionally graded materials,” J. Mater. Sci., vol. 30, no. 9, pp. 2183–2193, 1995. DOI: 10.1007/BF01184560.
  • N. Noda, “Thermal stresses in functionally graded materials,” J. Therm. Stresses, vol. 22, nos. 4–5, pp. 477–512, 1999. DOI: 10.1080/014957399280841.
  • V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., vol. 60, no. 5, pp. 195–216, 2007. DOI: 10.1115/1.2777164.
  • D. Gayen, R. Tiwari, and D. Chakraborty, 2021, “Thermo-mechanical analysis of a rotor-bearing system having a functionally graded shaft with transverse breathing cracks,” in Proceedings of the 6th National Symposium on Rotor Dynamics, J. S. Rao, V. Arun Kumar, and S. Jana, Eds. Singapore: Springer Singapore, pp. 93–104.
  • D. Gayen, D. Chakraborty, and R. Tiwari, 2020, “Transverse vibration and stability of a cracked functionally graded rotating shaft system,” Advances in Materials and Manufacturing Engineering, L. Li, D. K. Pratihar, S. Chakrabarty, and P. C. Mishra, Eds. Singapore: Springer Singapore, pp. 625–631.
  • D. Gayen, D. Chakraborty, and R. Tiwari, “Parametric study on free vibration and instability of a functionally graded cracked shaft in a rotor-disc-bearing system: Finite element approach,” Matec. Web Conf., vol. 172, pp. 03009, 2018. DOI: 10.1051/matecconf/201817203009.
  • Q. Li, P. Hou, and S. Shang, “Accurate 3D thermal stress analysis of thermal barrier coatings,” Int. J. Mech. Sci., vol. 217, pp. 107024, 2022. DOI: 10.1016/j.ijmecsci.2021.107024.
  • Z. Liu, et al., “Finite element simulation of thermal stress in rf magnetron sputtered sic coating as tritium penetration barrier,” Surf. Coat. Technol., vol. 446, pp. 128747, 2022. DOI: 10.1016/j.surfcoat.2022.128747.
  • Z. Yao, K. Hu, and R. Li, “Enhanced high-temperature thermal fatigue property of aluminum alloy piston with nano PYSZ thermal barrier coatings,” J. Alloys Comp., vol. 790, pp. 466–479, 2019. DOI: 10.1016/j.jallcom.2019.03.177.
  • K. Nagabandi, A. K. Pujari, and D. Sivarama Iyer, “Thermo-mechanical assessment of gas turbine combustor tile using locally varying thermal barrier coating thickness,” Appl. Therm. Eng., vol. 179, pp. 115657, 2020. DOI: 10.1016/j.applthermaleng.2020.115657.
  • L. G. Tan, G. L. Li, C. Tao, and P. F. Feng, “Study on fatigue life prediction of thermal barrier coatings for high-power engine pistons,” Eng. Fail. Anal., vol. 138, pp. 106335, 2022. DOI: 10.1016/j.engfailanal.2022.106335.
  • E. Samaniego, et al., “An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications,” Comput. Methods Appl. Mech. Eng., vol. 362, pp. 112790, 2020. DOI: 10.1016/j.cma.2019.112790.
  • H. Guo, X. Zhuang, P. Chen, N. Alajlan, and T. Rabczuk, “Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media,” Eng. Comput., vol. 38, no. 6, pp. 5173–5198, 2022. DOI: 10.1007/s00366-021-01586-2.
  • J. H. Kim and G. H. Paulino, “Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials,” J. Appl. Mech., vol. 69, no. 4, pp. 502–514, 2002. DOI: 10.1115/1.1467094.
  • A. M. Afsar and J. Go, “Finite element analysis of thermoelastic field in a rotating FGM circular disk,” Appl. Math. Model., vol. 34, no. 11, pp. 3309–3320, 2010. DOI: 10.1016/j.apm.2010.02.022.
  • F. Shahabian and S. M. Hosseini, “Stochastic dynamic analysis of a functionally graded thick hollow cylinder with uncertain material properties subjected to shock loading,” Mater. Des., vol. 31, no. 2, pp. 894–901, 2010. DOI: 10.1016/j.matdes.2009.07.040.
  • H. Nguyen-Xuan, L. V. Tran, C. H. Thai, and T. Nguyen-Thoi, “Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing,” Thin-Walled Struct., vol. 54, pp. 1–18, 2012. DOI: 10.1016/j.tws.2012.01.013.
  • H. Kim and S. Im, “Polyhedral smoothed finite element method for thermoelastic analysis,” J. Mech. Sci. Technol., vol. 31, no. 12, pp. 5937–5949, 2017. DOI: 10.1007/s12206-017-1138-5.
  • M. A. A. Cavalcante, S. P. C. Marques, and M. J. Pindera, “Parametric formulation of the finite-volume theory for functionally graded materials—Part I: Analysis,” J. Appl. Mech., vol. 74, no. 5, pp. 935–945, 2007. DOI: 10.1115/1.2722312.
  • M. A. A. Cavalcante, S. P. C. Marques, and M. J. Pindera, “Parametric formulation of the finite-volume theory for functionally graded materials—Part II: Numerical results,” J. Appl. Mech., vol. 74, no. 5, pp. 946–957, 2007. DOI: 10.1115/1.2722313.
  • J. Chareonsuk and P. Vessakosol, “Numerical solutions for functionally graded solids under thermal and mechanical loads using a high-order control volume finite element method,” Appl. Therm. Eng., vol. 31, nos. 2–3, pp. 213–227, 2011. DOI: 10.1016/j.applthermaleng.2010.09.001.
  • J. F. Gong, L. K. Xuan, P. J. Ming, and W. P. Zhang, “Thermoelastic analysis of functionally graded solids using a staggered finite volume method,” Compos. Struct., vol. 104, pp. 134–143, 2013. DOI: 10.1016/j.compstruct.2013.04.018.
  • J. F. Gong, P. J. Ming, L. K. Xuan, and W. P. Zhang, “Thermoelastic analysis of three-dimensional functionally graded rotating disks based on finite volume method,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 228, no. 4, pp. 583–598, 2014. DOI: 10.1177/0954406213489933.
  • J. F. Gong, L. K. Xuan, B. S. Ying and H. Wang, “Thermoelastic analysis of functionally graded porous materials with temperature-dependent properties by a staggered finite volume method,” Compos. Struct., vol. 224, pp. 111071, 2019. DOI: 10.1016/j.compstruct.2019.111071.
  • Q. Liu, Y. Yu, and P. J. Ming, “A high-order control volume finite element method for thermoelastic analysis of functionally graded solids with mixed grids,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 233, no. 11, pp. 3994–4013, 2019. DOI: 10.1177/0954406218811363.
  • Q. Liu, Q. Peng, and P. J. Ming, “A control volume finite element method for the thermoelastic problem in functional graded material with one relaxation time,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 235, no. 14, pp. 2554–2569, 2021. DOI: 10.1177/0954406220979022.
  • M. Cinefra, E. Carrera, S. Brischetto, and S. Belouettar, “Thermo-mechanical analysis of functionally graded shells,” J. Therm. Stresses, vol. 33, no. 10, pp. 942–963, 2010. DOI: 10.1080/01495739.2010.482379.
  • G. Giunta, D. Crisafulli, S. Belouettar, and E. Carrera, “A thermo-mechanical analysis of functionally graded beams via hierarchical modelling,” Compos. Struct., vol. 95, pp. 676–690, 2013. DOI: 10.1016/j.compstruct.2012.08.013.
  • P. Cardiff and I. Demirdžić, “Thirty years of the finite volume method for solid mechanics,” Arch. Comput. Methods Eng., vol. 28, no. 5, pp. 3721–3780, 2021. DOI: 10.1007/s11831-020-09523-0.
  • I. Demirdžić and D. Martinović, “Finite volume method for thermo-elasto-plastic stress analysis,” Comput. Methods Appl. Mech. Eng., vol. 109, nos. 3–4, pp. 331–349, 1993. DOI: 10.1016/0045-7825(93)90085-C.
  • Y. D. Fryer, C. Bailey, M. Cross, and C. H. Lai, “A control volume procedure for solving the elastic stress–strain equations on an unstructured mesh,” Appl. Math. Model., vol. 15, nos. 11–12, pp. 639–645, 1991. DOI: 10.1016/S0307-904X(09)81010-X.
  • C. Bailey and M. Cross, “A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh,” Numer. Methods Eng., vol. 38, no. 10, pp. 1757–1776, 1995. DOI: 10.1002/nme.1620381010.
  • G. A. Taylor, C. Bailey, and M. Cross, “A vertex-based finite volume method applied to non-linear material problems in computational solid mechanics,” Numer. Methods Eng., vol. 56, no. 4, pp. 507–529, 2003. DOI: 10.1002/nme.574.
  • A. K. Slone, C. Bailey, and M. Cross, “Dynamic solid mechanics using finite volume methods,” Appl. Math. Model., vol. 27, no. 2, pp. 69–87, 2003. DOI: 10.1016/S0307-904X(02)00060-4.
  • T. Liu, K. Liu, and J. Zhang, “Unstructured grid method for stress wave propagation in elastic media,” Computer Methods Appl. Mech. Eng., vol. 193, nos. 23–26, pp. 2427–2452, 2004. DOI: 10.1016/j.cma.2004.01.030.
  • J. Charoensuk and P. Vessakosol, “A high order control volume finite element procedure for transient heat conduction analysis of functionally graded materials,” Heat Mass Transfer, vol. 46, nos. 11–12, pp. 1261–1276, 2010. DOI: 10.1007/s00231-010-0649-8.
  • J. F. Gong, L. K. Xuan, P. J. Ming, and W. P. Zhang, “An unstructured finite-volume method for transient heat conduction analysis of multilayer functionally graded materials with mixed grids,” Numer. Heat Transfer B: Fundam., vol. 63, no. 3, pp. 222–247, 2013. DOI: 10.1080/10407790.2013.751251.
  • M. J. Raw, G. E. Schneider, and V. Hassani, “A nine-noded quadratic control-volume-based finite element for heat conduction,” J. Spacecraft Rockets, vol. 22, no. 5, pp. 523–529, 1985. DOI: 10.2514/3.25063.
  • Q. Liu, P. J. Ming, H. Y. Zhao, and W. P. Zhang, “A high order control volume finite element method for transient heat conduction analysis of multilayer functionally graded materials with mixed grids,” J. Therm. Sci., vol. 29, no. 1, pp. 144–158, 2020. DOI: 10.1007/s11630-019-1167-8.
  • J. F. Gong, L. K. Xuan, P. J. Ming, W. P. Zhang, and C. X. Han, “Research on the finite volume method for the thermoelastic stress analysis of thermal barrier coatings,” J. Harbin Eng. Univ., vol. 35, no. 6, pp. 713–718, 2014.
  • Q. Liu and P. J. Ming, “A high-order control volume finite element method for 3-d transient heat conduction analysis of multilayer functionally graded materials,” Numer. Heat Transfer B: Fundam., vol. 73, no. 6, pp. 363–385, 2018. DOI: 10.1080/10407790.2018.1470425.
  • Liu, Q., Du, Y. X., Qi W. L., Liu, L., and Xiao G. M., “High-order control volume finite element method for thermal stress analysis of the piston with thermal barrier coating,” J. Sichuan Univ. (Nat. Sci. Ed.), vol. 58, no. 6, pp. 111–120, 2021.
  • E. Rabizadeh, A. Saboor Bagherzadeh, and T. Rabczuk, “Goal-oriented error estimation and adaptive mesh refinement in dynamic coupled thermoelasticity,” Comput. Struct., vol. 173, pp. 187–211, 2016. DOI: 10.1016/j.compstruc.2016.05.024.
  • O. J. B. A. Pereira, “Hybrid equilibrium hexahedral elements and super-elements,” Commun. Numer. Meth. Eng., vol. 24, no. 2, pp. 157–165, 2006. DOI: 10.1002/cnm.967.
  • Y. H. Li, R. P. Niu and G. R. Liu, “Highly accurate smoothed finite element methods based on simplified eight-noded hexahedron elements,” Eng. Anal. Bound. Elem., vol. 105, pp. 165–177, 2019. DOI: 10.1016/j.enganabound.2019.03.020.
  • H. Beckert and J. L. Nowinski , Theory of thermoelasticity with applications. mechanics of surface structures. Alphen Aan den Rijn, Noordhoff International Publishing 1978, 852 S., Dfl. 200.00.$.93,” Z Angew. Math. Mech., vol. 59, no. 12, pp. 754–754, 1979. DOI: 10.1002/zamm.19790591218.
  • M. Jabbari, S. Sohrabpour, and M. R. Eslami, “Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads,” Int. J. Pressure Vessels Piping, vol. 79, no. 7, pp. 493–497, 2002. DOI: 10.1016/S0308-0161(02)00043-1.
  • X. L. Peng and X. F. Li, “Thermoelastic analysis of functionally graded annulus with arbitrary gradient,” Appl. Math. Mech.-Engl. Ed., vol. 30, no. 10, pp. 1211–1220, 2009. DOI: 10.1007/s10483-009-1001-7.
  • Ž. Tuković, A. Ivanković, and A. Karač, “Finite-volume stress analysis in multi-material linear elastic body: Finite-volume stress analysis in multi-material linear elastic body,” Numer. Meth. Eng., vol. 93, no. 4, pp. 400–419, 2013. DOI: 10.1002/nme.4390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.