43
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Stiffness design, failure modes, and lightweight design of truss-lattice with filler sandwich plate under thermal loading

, ORCID Icon &
Pages 419-446 | Received 19 Aug 2021, Accepted 14 Apr 2023, Published online: 12 Mar 2024

References

  • W. Yuan, H. Song, X. Wang, and C. Huang, “Experimental investigation on thermal buckling behavior of truss-core sandwich panels,” AIAA J., vol. 53, no. 4, pp. 948–957, 2015. DOI: 10.2514/1.J053246.
  • W. Yuan, H. Song, and C. Huang, “Failure maps and optimal design of metallic sandwich panels with truss cores subjected to thermal loading,” Int. J. Mech. Sci., vol. 115–116, pp. 56–67, 2016. DOI: 10.1016/j.ijmecsci.2016.06.006.
  • W. Yuan, X. Wang, H. Song, and C. Huang, “A theoretical analysis on the thermal buckling behavior of fully clamped sandwich panels with truss cores,” J. Therm. Stress., vol. 37, no. 12, pp. 1433–1448, 2014. DOI: 10.1080/01495739.2014.937263.
  • J. Xiong, L. Ma, L. Wu, J. Liu, and A. Vaziri, “Mechanical behavior and failure of composite pyramidal truss core sandwich columns,” Compos. B Eng., vol. 42, no. 4, pp. 938–945, 2011. DOI: 10.1016/j.compositesb.2010.12.021.
  • R. S. Kumar and D. L. Mcdowell, “Generalized continuum modeling of 2-D periodic cellular solids,” Int. J. Solids Struct., vol. 41, no. 26, pp. 7399–7422, 2004. DOI: 10.1016/j.ijsolstr.2004.06.038.
  • S. Arabnejad and D. Pasini, “Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods,” Int. J. Mech. Sci., vol. 77, pp. 249–262, 2013. DOI: 10.1016/j.ijmecsci.2013.10.003.
  • Y. Rahali, I. Giorgio, J. F. Ganghoffer, and F. dell’Isola, “Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices,” Int. J. Eng. Sci., vol. 97, no. Dec, pp. 148–172, 2015. DOI: 10.1016/j.ijengsci.2015.10.003.
  • J. Y. Chen, Y. Huang, and M. Ortiz, “Fracture analysis of cellular materials: a strain gradient model,” J. Mech. Phys. Solids, vol. 46, no. 5, pp. 789–828, 1998. DOI: 10.1016/S0022-5096(98)00006-4.
  • C. Florence and K. Sab, “A rigorous homogenization method for the determination of the overall ultimate strength of periodic discrete media and an application to general hexagonal lattices of beams,” Eur. J. Mech., vol. 25, no. 1, pp. 72–97, 2006. DOI: 10.1016/j.euromechsol.2005.06.011.
  • S. Sturm, S. Zhou, Y.-W. Mai, and Q. Li, “On stiffness of scaffolds for bone tissue engineering–a numerical study,” J. Biomech., vol. 43, no. 9, pp. 1738–1744, 2010. DOI: 10.1016/j.jbiomech.2010.02.020.
  • M. Assidi, F. D. Reis, and J. F. Ganghoffer, “Equivalent mechanical properties of biological membranes from lattice homogenization,” J. Mech. Behav. Biomed. Mater., vol. 4, no. 8, pp. 1833–1845, 2011. DOI: 10.1016/j.jmbbm.2011.05.040.
  • L. U. Tianjian, T. Liu, and Z. C. Deng, “Thermoelastic properties of sandwich materials with pin-reinforced foam cores,” Sci. China Ser. E Technol. Sci., vol. 51, no. 12, pp. 2059–2074, 2008. DOI: 10.1007/s11431-008-0226-2.
  • W. Huang, H. Xu, Z. Fan, W. Jiang, and J. Liu, “Dynamic failure of ceramic particle reinforced foam-filled composite lattice core,” Compos. Sci. Technol., vol. 193, pp. 108143, 2020. DOI: 10.1016/j.compscitech.2020.108143.
  • T. George, V. S. Deshpande, and H. N. G. Wadley, “Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores,” Compos. A Appl. Sci. Manuf., vol. 47, pp. 31–40, 2013. DOI: 10.1016/j.compositesa.2012.11.011.
  • S. Lee, F. Barthelat, J. W. Hutchinson, and H. D. Espinosa, “Dynamic failure of metallic pyramidal truss core materials – experiments and modeling,” Int. J. Plast., vol. 22, no. 11, pp. 2118–2145, 2006. DOI: 10.1016/j.ijplas.2006.02.006.
  • D. G. Vaughn, J. M. Canning, and J. W. Hutchinson, “Coupled plastic wave propagation and column buckling,” J. Appl. Mech., vol. 72, no. 1, pp. 139–146, 2005. DOI: 10.1115/1.1825437.
  • Y. Wu and L. Yang, “Elastic and failure characteristics of additive manufactured thin wall lattice structures with defects,” Thin Walled Struct., vol. 161, pp. 107493, 2021. DOI: 10.1016/j.tws.2021.107493.
  • E. Yüksel et al., “Experimental investigation and pseudoelastic truss model for in-plane behavior of corrugated sandwich panels with polyurethane foam core,” Structures, vol. 29, pp. 823–842, 2021. DOI: 10.1016/j.istruc.2020.11.058.
  • J. Wang et al., “Compression performances and failure maps of sandwich cylinders with pyramidal truss cores obtained through geometric mapping and snap-fit method,” Compos. Struct., vol. 226, pp. 111212, 2019. DOI: 10.1016/j.compstruct.2019.111212.
  • Q. Zheng, D. Jiang, C. Huang, X. Shang, and S. Ju, “Analysis of failure loads and optimal design of composite lattice cylinder under axial compression,” Compos. Struct., vol. 131, no. v, pp. 885–894, 2015. DOI: 10.1016/j.compstruct.2015.06.047.
  • M. Li, C. Lai, Q. Zheng, and H. Fan, “Multi-failure analyses of carbon fiber reinforced anisogrid lattice cylinders,” Aerosp. Sci. Technol., vol. 100, pp. 105777, 2020. DOI: 10.1016/j.ast.2020.105777.
  • L. Chen et al., “Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load,” Thin Walled Struct., vol. 127, no. Jun, pp. 333–343, 2018. DOI: 10.1016/j.tws.2017.10.048.
  • B. J. R. Smeets et al., “Structural testing of a shear web attachment point on a composite lattice cylinder for aerospace applications,” Compos. B Eng., vol. 212, pp. 108691, 2021. DOI: 10.1016/j.compositesb.2021.108691.
  • A. Gy, A. Hb, and A. Yh, “Compression behaviors of 3D printed pyramidal lattice truss composite structures,” Compos. Struct., vol. 233, pp. 100615, 2021.
  • Z. B. TlA and D. Tjlc, “Design optimization of truss-cored sandwiches with homogenization,” Int. J. Solids Struct., vol. 43, no. 25–26, pp. 7891–7918, 2006.
  • F. Nadia, “Thermomechanical properties of strut-lattices,” J. Mech. Phys Solids., vol. 55, pp. 803–818, 2007.
  • B. Han. Mechanical Behaviors of Reinforced Corrugated Composite Cellular Materials. Xi’an Jiaotong University, 2015.
  • G. Shen and G. Hu. Mechanics of Composite Structures. Tsinghua University Press, 2006.
  • X. Wang. Basic Principles and Numerical Methods of Finite Element Method. Tsinghua University Press, 1997.
  • Q. A. Ge, A. Ylc, and B. Pr, “Characteristics of an improved boundary insert for sandwich panels with lattice truss cores,” Aerosp. Sci. Technol., vol. 107, pp. 106278, 2020.
  • H. Wang, S. Li, Y. Liu, P. Wang, F. Jin, and H. Fan, “Foam-filling techniques to enhance mechanical behaviors of woven lattice truss sandwich panels,” J. Build. Eng., vol. 40, no. 2, pp. 102383, 2021. DOI: 10.1016/j.jobe.2021.102383.
  • L.-J. Feng, J. Xiong, L.-H. Yang, G.-C. Yu, W. Yang, and L.-Z. Wu, “Shear and bending performance of new type enhanced lattice truss structures,” Int. J. Mech. Sci., vol. 134, pp. 589–598, 2017. DOI: 10.1016/j.ijmecsci.2017.10.045.
  • L. Tao, C. D. Zi, and J. L. Tian, “Analytical modeling and finite element simulation of the plastic collapse of sandwich beams with pin-reinforced foam cores,” Int. J. Solids Struct., vol. 45, no. 18–19, pp. 5127–5151, 2008.
  • W. H. Lee, S. C. Han, and W. T. Park, “A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation,” Compos. Struct., vol. 122, pp. 330–342, 2015. DOI: 10.1016/j.compstruct.2014.11.047.
  • H. T. Thai and S. E. Kim, “A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates,” Compos. Struct., vol. 99, no. May, pp. 172–180, 2013. DOI: 10.1016/j.compstruct.2012.11.030.
  • Y. H. Dong and Y. H. Li, “A unified nonlinear analytical solution of bending, buckling and vibration for the temperature-dependent FG rectangular plates subjected to thermal load,” Compos. Struct., vol. 159, pp. 689–701, 2017. DOI: 10.1016/j.compstruct.2016.10.001.
  • X. Hu, W. Yuan, and H. Song, “Theoretical analysis on the thermal buckling behavior of material-filled truss-core sandwich plates with various boundary conditions,” J. Therm. Stress., vol. 45, no. 1, pp. 81–99, 2022. DOI: 10.1080/01495739.2021.2006102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.