68
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thickness-stretched model for thermal vibrational behaviors of graphene origami reinforced doubly curved

, , &
Pages 502-520 | Received 24 Apr 2023, Accepted 17 Feb 2024, Published online: 12 Mar 2024

References

  • M. S. H. Al-Furjan, A. Hatami, M. Habibi, L. Shan and A. Tounsi, “On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method,” Compos. Struct., vol. 257, pp. 113150, 2021. DOI: 10.1016/j.compstruct.2020.113150.
  • S. Ahmad Fazelzadeh, S. Rahmani, E. Ghavanloo and P. Marzocca, “Thermoelastic vibration of doubly-curved nano-composite shells reinforced by graphene nanoplatelets,” J. Thermal Stress., vol. 42, no. 1, pp. 1–17, 2019. DOI: 10.1080/01495739.2018.1524733.
  • K. Mehar, S. K. Panda, T. Q. Bui and T. R. Mahapatra, “Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM,” J. Thermal Stress., vol. 40, no. 7, pp. 899–916, 2017. DOI: 10.1080/01495739.2017.1318689.
  • M. Arefi, “A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution,” Lat. Am. J. Solids Struct., vol. 11, no. 11, pp. 2073–2092, 2014. DOI: 10.1590/S1679-78252014001100009.
  • M. Mohammadi, M. Arefi, R. Dimitri and F. Tornabene, “Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation,” Nanomaterials, vol. 9, no. 1, pp. 79, 2019. DOI: 10.3390/nano9010079.
  • M. Kiani, A. M. Zenkour and M. Arefi, “Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak’s foundation via MCST,” J. Sandwich Struct. Mater., vol. 22, no. 1, pp. 55–86, 2020. DOI: 10.1177/1099636217734279.
  • M. Mohammadi, A. Tabatabaeian, R. Dimitri, F. Tornabene and M. Arefi, “Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels,” Steel Compos. Struct., vol. 27, no. 4, pp. 525–536, 2018. DOI: 10.12989/scs.2018.27.4.525.
  • Z. Zhang, Z. Tian, Y. Mei and Z. Di, “Shaping and structuring 2D materials via Kirigami and origami,” Mater. Sci. Eng. Reports, vol. 145, pp. 100621, 2021. DOI: 10.1016/j.mser.2021.100621.
  • F. Meng, et al., “Negative Poisson’s ratio in graphene Miura origami,” Mech. Mater., vol. 155, pp. 103774, 2021. DOI: 10.1016/j.mechmat.2021.103774.
  • N. Wei, Y. Chen, Y. Zhang, J.-C. Zheng, J. Zhao and Y.-W. Mai, “Crease-induced targeted cutting and folding of graphene origami,” Carbon, vol. 165, pp. 259–266, 2020. DOI: 10.1016/j.carbon.2020.04.058.
  • F. Ebrahimi and M. Parsi, “Wave propagation analysis of functionally graded graphene origami-enabled auxetic metamaterial beams resting on an elastic foundation,” Acta Mech., vol. 234, no. 12, pp. 6169–6190, 2023. DOI: 10.1007/s00707-023-03705-0.
  • W. Fan, et al., “An antisweat interference and highly sensitive temperature sensor based on poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature,” ACS Nano, vol. 17, no. 21, pp. 21073–21082, 2023. DOI: 10.1021/acsnano.3c04246.
  • W. Fan, et al., “MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors,” Nanomicro Lett., vol. 16, no. 1, pp. 36, 2024. DOI: 10.1007/s40820-023-01226-y.
  • C. Wang, et al., “A sustainable strategy to transform cotton waste into renewable cellulose fiber self-reinforcing composite paper,” J. Clean. Prod., vol. 429, pp. 139567, 2023. DOI: 10.1016/j.jclepro.2023.139567.
  • Y. Zhang, et al., “A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications,” Chem. Eng. J., vol. 471, pp. 144679, 2023. DOI: 10.1016/j.cej.2023.144679.
  • Y. Sun, et al., “Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature,” Adv. Compos. Hybrid Mater., vol. 5, no. 3, pp. 1951–1965, 2022. DOI: 10.1007/s42114-022-00526-y.
  • X. Zhang, Y. Tang, F. Zhang and C. Lee, “A novel aluminum-graphite dual-ion battery,” Adv. Energy Mater., vol. 6, no. 11, pp. 1502588, 2016. DOI: 10.1002/aenm.201502588.
  • Z. H. Fu, et al., “Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones,” Corros. Sci., vol. 164, pp. 108337, 2020. DOI: 10.1016/j.corsci.2019.108337.
  • M. Z. Miskin, et al., “Graphene-based bimorphs for micron-sized, autonomous origami machines,” Proc. Natl. Acad. Sci. U S A, vol. 115, no. 3, pp. 466–470, 2018. DOI: 10.1073/pnas.1712889115.
  • K. Cai, S. Sun, J. Shi and Q.-H. Qin, “Carbon-nanotube nanomotor driven by graphene origami,” Phys. Rev. Appl., vol. 15, no. 5, pp. 054017, 2021. DOI: 10.1103/PhysRevApplied.15.054017.
  • Z. Y. Zhu, Y. L. Liu, G. Q. Gou, W. Gao and J. Chen, “Effect of heat input on interfacial characterization of the butter joint of hot-rolling CP-Ti/Q235 bimetallic sheets by Laser + CMT,” Sci. Rep., vol. 11, no. 1, pp. 10020, 2021. DOI: 10.1038/s41598-021-89343-9.
  • Q. Zhu, J. Chen, G. Gou, H. Chen and P. Li, “Ameliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurement,” J. Mater. Process. Technol., vol. 246, pp. 267–275, 2017. DOI: 10.1016/j.jmatprotec.2017.03.022.
  • B. Bai, S. Jiang, L. Liu, X. Li and H. Wu, “The transport of silica powders and lead ions under unsteady flow and variable injection concentrations,” Powder Technol., vol. 387, pp. 22–30, 2021. DOI: 10.1016/j.powtec.2021.04.014.
  • B. Bai, T. Xu, Q. Nie and P. Li, “Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils,” Int. J. Heat Mass Transf., vol. 153, pp. 119573, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119573.
  • B. Bai, F. Bai, Q. Nie and X. Jia, “A high-strength red mud–fly ash geopolymer and the implications of curing temperature,” Powder Technol., vol. 416, pp. 118242, 2023. DOI: 10.1016/j.powtec.2023.118242.
  • B. Bai, J. Wang, Z. Zhai and T. Xu, “The penetration processes of red mud filtrate in a porous medium by seepage,” Transp. Porous Med., vol. 117, no. 2, pp. 207–227, 2017. DOI: 10.1007/s11242-017-0829-9.
  • W. Peng, S. S. Lam and C. Sonne, “Support Austria’s glyphosate ban,” Science, vol. 367, no. 6475, pp. 257–258, 2020. DOI: 10.1126/science.aba5642.
  • K. Araki and R. Z. Zhang, “Plasmon-resonance emission tailoring of “origami” graphene-covered photonic gratings,” Opt. Express, vol. 28, no. 15, pp. 22791–22802, 2020. DOI: 10.1364/OE.397501.
  • K. Gustafson, O. Angatkina and A. Wissa, “Model-based design of a multistable origami-enabled crawling robot,” Smart Mater. Struct., vol. 29, no. 1, pp. 015013, 2020. DOI: 10.1088/1361-665X/ab52c5.
  • K. Yang, et al., “The critical role of corrugated lamellae morphology on the tough mechanical performance of natural Syncerus caffer horn sheath,” Cell Reports Phys. Sci., vol. 4, no. 9, pp. 101576, 2023. DOI: 10.1016/j.xcrp.2023.101576.
  • L. Zhang, Y. Wang, B. Ding, J. Gu, N. Ukrainczyk and J. Cai, “Development of geopolymer-based composites for geothermal energy applications,” J. Clean. Prod., vol. 419, pp. 138202, 2023. DOI: 10.1016/j.jclepro.2023.138202.
  • K. Yang, et al., “Correlating multi-scale structure characteristics to mechanical behavior of Caprinae horn sheaths,” J. Mater. Res. Technol., vol. 21, pp. 2191–2202, 2022. DOI: 10.1016/j.jmrt.2022.10.044.
  • P. Wang, X. Wu and X. He, “Vibration-theoretic approach to vulnerability analysis of nonlinear vehicle platoons,” IEEE Trans. Intell. Transport. Syst., vol. 24, no. 10, pp. 11334–11344, 2023. DOI: 10.1109/TITS.2023.3278574.
  • S. Song, D. Chong, Q. Zhao, W. Chen and J. Yan, “Numerical investigation of the condensation oscillation mechanism of submerged steam jet with high mass flux,” Chem. Eng. Sci., vol. 270, pp. 118516, 2023. DOI: 10.1016/j.ces.2023.118516.
  • C. Zhou, et al., “Hysteresis dynamic model of metal rubber based on higher-order nonlinear friction (HNF),” Mech. Syst. Signal Process., vol. 189, pp. 110117, 2023. DOI: 10.1016/j.ymssp.2023.110117.
  • S. Ge, et al., “Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite,” ACS Appl. Mater. Interfaces, vol. 12, no. 27, pp. 30824–30832, 2020. DOI: 10.1021/acsami.0c07448.
  • X. Yue, et al., “Mitigation of indoor air pollution: a review of recent advances in adsorption materials and catalytic oxidation,” J. Hazard. Mater., vol. 405, pp. 124138, 2021. DOI: 10.1016/j.jhazmat.2020.124138.
  • S. Ge, et al., “Vacuum pyrolysis incorporating microwave heating and base mixture modification: an integrated approach to transform biowaste into eco-friendly bioenergy products,” Renew. Sustain. Energy Rev., vol. 127, pp. 109871, 2020. DOI: 10.1016/j.rser.2020.109871.
  • S. Y. Foong, et al., “Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions,” Chem. Eng. J., vol. 389, pp. 124401, 2020. DOI: 10.1016/j.cej.2020.124401.
  • S. S. Lam, et al., “Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment,” J. Hazard. Mater., vol. 390, pp. 121649, 2020. DOI: 10.1016/j.jhazmat.2019.121649.
  • M. Zhang, X. Jiang and M. Arefi, “Dynamic formulation of a sandwich microshell considering modified couple stress and thickness-stretching,” Eur. Phys. J. Plus, vol. 138, no. 3, pp. 227, 2023. DOI: 10.1140/epjp/s13360-023-03753-4.
  • H. Wang, F. Wang, D. Qian, F. Chen, Z. Dong and L. Hua, “Investigation of damage mechanisms related to microstructural features of ferrite-cementite steels via experiments and multiscale simulations,” Int. J. Plast., vol. 170, pp. 103745, 2023. DOI: 10.1016/j.ijplas.2023.103745.
  • L. Hua, Y. Liu, D. Qian, L. Xie, F. Wang and M. Wu, “Mechanism of void healing in cold rolled aeroengine M50 bearing steel under electroshocking treatment: a combined experimental and simulation study,” Mater. Charact., vol. 185, pp. 111736, 2022. DOI: 10.1016/j.matchar.2022.111736.
  • H. Zhang, et al., “Effects of Ni-decorated reduced graphene oxide nanosheets on the microstructural evolution and mechanical properties of Sn-3.0Ag-0.5Cu composite solders,” Intermetallics, vol. 150, pp. 107683, 2022. DOI: 10.1016/j.intermet.2022.107683.
  • H. Guo and J. Zhang, “Expansion of sandwich tubes with metal foam core under axial compression,” J. Appl. Mech., vol. 90, no. 5, pp. 051008, 2023. DOI: 10.1115/1.4056686.
  • L.-C. Jia, et al., “Self-standing boron nitride bulks enabled by liquid metals for thermal management,” Mater. Horiz., vol. 10, no. 12, pp. 5656–5665, 2023. DOI: 10.1039/D3MH01359F.
  • N. Wei, et al., “Pseudo-correlation problem and its solution for the transfer forecasting of short-term natural gas loads,” Gas Sci. Eng., vol. 119, pp. 205133, 2023. DOI: 10.1016/j.jgsce.2023.205133.
  • N. Wei, et al., “Short-term load forecasting based on WM algorithm and transfer learning model,” Appl. Energy, vol. 353, pp. 122087, 2024. DOI: 10.1016/j.apenergy.2023.122087.
  • E. A. Shamsabadi, M. Salehpour, P. Zandifaez and D. Dias-da-Costa, “Data-driven multicollinearity-aware multi-objective optimisation of green concrete mixes,” J. Clean. Prod., vol. 390, pp. 136103, 2023. DOI: 10.1016/j.jclepro.2023.136103.
  • P. Zandifaez, E. A. Shamsabadi, A. A. Nezhad, H. Zhou and D. Dias-da-Costa, “AI-Assisted optimisation of green concrete mixes incorporating recycled concrete aggregates,” Constr. Build. Mater., vol. 391, pp. 131851, 2023. DOI: 10.1016/j.conbuildmat.2023.131851.
  • M. Arefi and A. M. Zenkour, “Transient analysis of a three-layer microbeam subjected to electric potential,” Int. J. Smart Nano Mater., vol. 8, no. 1, pp. 20–40, 2017. DOI: 10.1080/19475411.2017.1292967.
  • M. Arefi and G. H. Rahimi, “The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clamped–clamped FG cylinder under mechanical and thermal loads,” Int. J. Pressure Vessels Piping, vol. 96–97, pp. 30–37, 2012. DOI: 10.1016/j.ijpvp.2012.05.009.
  • M. Arefi, G. H. Rahimi, and M. J. Khoshgoftar, Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material, Afr. J. Bus. Manage., vol. 6, no. 27, pp. 6315–6322, 2011. DOI: 10.5897/IJPS10.597.
  • M. Arefi and M. N. M. Allam, “Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation,” Smart Struct. Syst., vol. 16, no. 1, pp. 81–100, 2015. 81. DOI: 10.12989/sss.2015.16.1.081.
  • M. Arefi and G. H. Rahimi, “Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure,” Smart Struct. Syst., vol. 8, no. 5, pp. 433–447, 2011. DOI: 10.12989/sss.2011.8.5.433.
  • L. Chen, Y. Zhao, M. Li, L. Li, L. Hou and H. Hou, “Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions,” Mater. Sci. Eng. A, vol. 804, pp. 140793, 2021. DOI: 10.1016/j.msea.2021.140793.
  • M. Li, Q. Guo, L. Chen, L. Li, H. Hou and Y. Zhao, “Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting,” J. Mater. Res. Technol., vol. 21, pp. 4138–4150, 2022. DOI: 10.1016/j.jmrt.2022.11.033.
  • Z. Lu, D. Wu, H. Ding and L. Chen, “Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness,” Appl. Math. Modell., vol. 89, pp. 249–267, 2021. DOI: 10.1016/j.apm.2020.07.060.
  • M. S. H. Al-Furjan, M. Habibi, D. Jung, G. Chen, M. Safarpour and H. Safarpour, “Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel,” Eur. J. Mech. A/Solids, vol. 85, pp. 104091, 2021. DOI: 10.1016/j.euromechsol.2020.104091.
  • F. Kong, F. Dong, M. Duan, M. Habibi, H. Safarpour and A. Tounsi, “On the vibrations of the Electrorheological sandwich disk with composite face sheets considering pre and post-yield regions,” Thin-Walled Struct., vol. 179, pp. 109631, 2022. DOI: 10.1016/j.tws.2022.109631.
  • S. Liu, G. Lu, Y. Chen and Y. W. Leong, “Deformation of the Miura-ori patterned sheet,” Int. J. Mech. Sci., vol. 99, pp. 130–142, 2015. DOI: 10.1016/j.ijmecsci.2015.05.009.
  • M. Arefi and M. Amabili, “A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory,” Compos. Struct., vol. 257, pp. 113100, 2021. DOI: 10.1016/j.compstruct.2020.113100.
  • M. Arefi, “Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells,” Mech. Based Design Struct. Mach., vol. 49, no. 6, pp. 781–810, 2021. DOI: 10.1080/15397734.2019.1698435.
  • M. Arefi and G. H. Rahimi, “Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure,” Smart Struct. Syst., vol. 9, no. 2, pp. 127–143, 2012. DOI: 10.12989/sss.2012.9.2.127.
  • M. Arefi, G. H. Rahimi and M. J. Khoshgoftar, “Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field,” Smart Struct. Syst., vol. 9, no. 5, pp. 427–439, 2012. DOI: 10.12989/sss.2012.9.5.427.
  • M. Arefi and G. H. Rahimi, “Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder,” Smart Struct. Syst., vol. 13, no. 1, pp. 1–24, 2014. DOI: 10.12989/sss.2014.13.1.001.
  • M. Arefi and G. H. Rahimi, “Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity,” Acta Mech., vol. 223, no. 1, pp. 63–79, 2012. DOI: 10.1007/s00707-011-0536-5.
  • M. Arefi and A. M. Zenkour, “Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory,” J. Intell. Mater. Syst. Struct., vol. 29, no. 7, pp. 1394–1406, 2018. DOI: 10.1177/1045389X17733333.
  • M. Arefi and G. H. Rahimi, “Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method,” Mechanika, vol. 18, no. 1, pp. 292–300, 2012. DOI: 10.5755/j01.mech.18.3.1875.
  • S. Zhao, Y. Zhang, Y. Zhang, J. Yang and S. Kitipornchai, “A functionally graded auxetic metamaterial beam with tunable nonlinear free vibration characteristics via graphene origami,” Thin-Walled Struct., vol. 181, pp. 109997, 2022. DOI: 10.1016/j.tws.2022.109997.
  • Y. C. Chern and C. C. Chao, “Comparison of natural frequencies of laminates by 3-D theory—part II: curved panels,” J. Sound Vib., vol. 230, no. 5, pp. 1009–1030, 2000. DOI: 10.1006/jsvi.1999.2454.
  • R. K. Khare, T. Kant and A. K. Garg, “Free vibration of composite and sandwich laminates with a higher-order facet shell element,” Compos. Struct., vol. 65, no. 3–4, pp. 405–418, 2004. DOI: 10.1016/j.compstruct.2003.12.003.
  • S. C. Fan and M. H. Luah, “Free vibration analysis of arbitrary thin shell structures by using spline finite element,” J. Sound Vib., vol. 179, no. 5, pp. 763–776, 1995. DOI: 10.1006/jsvi.1995.0051.
  • S. Hosseini-Hashemi and M. Fadaee, “On the free vibration of moderately thick spherical shell panel—A new exact closed—form procedure,” J. Sound Vib., vol. 330, no. 17, pp. 4352–4367, 2011. DOI: 10.1016/j.jsv.2011.04.011.
  • Y. Kiani, M. Shakeri and M. R. Eslami, “Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation,” Acta Mech., vol. 223, no. 6, pp. 1199–1218, 2012. DOI: 10.1007/s00707-012-0629-9.
  • P. Zandifaez, A. A. Nezhad, H. Zhou and D. Dias-Da-Costa, “A systematic review on energy-efficient concrete: Indicators, performance metrics, strategies, and future trends,” Renew Sust Energ Rev., vol. 194, pp. 114306,  2024. DOI: 10.1016/j.rser.2024.114306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.