35
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of thermal mismatch strain on the self-assembly of nanorods in YBCO/NRs nanocomposite films

, &
Pages 826-840 | Received 16 Jun 2023, Accepted 03 Mar 2024, Published online: 25 Apr 2024

References

  • M. Leghissa, et al., “Development and application of superconducting transformers,” Physica C, vol. 372–376, pp. 1688–1693, 2002. DOI: 10.1016/S0921-4534(02)01102-4.
  • S. Mukoyama, et al., “Development of (RE)BCO cables for HTS power transmission lines,” Physica C, vol. 469, no. 15–20, pp. 1688–1692, 2009. DOI: 10.1016/j.physc.2009.05.251.
  • J. Z. Wu, et al., “The effect of lattice strain on the diameter of BaZrO3 nanorods in epitaxial YBa2Cu3O7-δ films,” Supercond. Sci. Technol, vol. 27, no. 4, pp. 44010, 2014. DOI: 10.1088/0953-2048/27/4/044010.
  • P. Mele, et al., “Systematic study of BaSnO3 doped YBa2Cu3O7-x films,” Physica C, vol. 469, no. 15–20, pp. 1380–1383, 2009. DOI: 10.1016/j.physc.2009.05.080.
  • H. Tobita, et al., “Fabrication of BaHfO3 doped Gd1Ba2Cu3O7-δ coated conductors with the high Ic of 85 A/cm-w under 3 T at liquid nitrogen temperature (77 K),” Supercond. Sci. Technol., vol. 25, no. 6, pp. 62002, 2012. DOI: 10.1088/0953-2048/25/6/062002.
  • B. Uzun, Ö. Civalek and M. Ö. Yaylı, “Torsional and axial vibration of restrained saturated nanorods via strain gradient elasticity,” Arch Appl Mech, vol. 93, no. 4, pp. 1605–1630, 2023. DOI: 10.1007/s00419-022-02348-2.
  • B. Uzun, et al., “Size-dependent vibration of porous bishop nanorod with arbitrary boundary conditions and nonlocal elasticity effects,” J. Vib. Eng. Technol, vol. 11, no. 3, pp. 809–826, 2023. DOI: 10.1007/s42417-022-00610-z.
  • M. Arda, “Axial dynamics of functionally graded Rayleigh-Bishop nanorods,” Microsyst Technol, vol. 27, no. 1, pp. 269–282, 2021. DOI: 10.1007/s00542-020-04950-2.
  • B. Uzun and M. Ö. Yaylı, “Porosity dependent torsional vibrations of restrained FG nanotubes using modified couple stress theory,” Mater. Today Commun., vol. 32, pp. 103969, 2022. DOI: 10.1016/j.mtcomm.2022.103969.
  • U. Gul and M. Aydogdu, “On the axial vibration of viscously damped short-fiber-reinforced nano/micro-composite rods,” J. Vib. Eng. Technol, vol. 11, no. 3, pp. 1327–1341, 2023. DOI: 10.1007/s42417-022-00643-4.
  • B. Uzun, Ö. Civalek and M. Ö. Yayli, “A hardening nonlocal elasticity approach to axial vibration analysis of an arbitrarily supported FG nanorod,” Phys Mesomech, vol. 26, no. 3, pp. 295–312, 2023. DOI: 10.1134/S1029959923030050.
  • B. Alizadeh Hamidi, et al., “Closed form solution for dynamic analysis of rectangular nanorod based on nonlocal strain gradient,” Wave. Random. Complex, vol. 32, no. 5, pp. 2067–2083, 2022. DOI: 10.1080/17455030.2020.1843737.
  • B. Safaei, “Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces,” Eur. Phys. J. Plus, vol. 136, no. 6, pp. 1–16, 2021. DOI: 10.1140/epjp/s13360-021-01632-4.
  • Z. Yang, et al., “Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness,” Archiv. Civ. Mech. Eng., vol. 21, no. 3, pp. 1–19, 2021. DOI: 10.1007/s43452-021-00264-w.
  • Q. Li, B. Xie, S. Sahmani, et al., “Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction.,” J. Braz. Soc. Mech. Sci, vol. 42, pp. 1–18, 2020. DOI: 10.1007/s40430-020-02317-2.
  • A. M. Fattahi, B. Safaei, Z. Qin, et al., “Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites,” Steel Compos. Struct., vol. 38, no. 2, pp. 177–187, 2021. DOI: 10.12989/scs.2021.38.2.177.
  • J. Feng, et al., “Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene,” Compos. Sci. Technol., vol. 233, pp. 109925, 2023. DOI: 10.1016/j.compscitech.2023.109925.
  • G. Feng, “A circular sector vibration system in a porous medium,” Facta. Univ.-Ser. Mech., vol. 29, no. 1, pp. 31–50, 2023. DOI: 10.22190/FUME230428025F.
  • Y. Chen, et al., “Statistical damage constitutive model based on the Hoek–Brown criterion,” Archiv. Civ. Mech. Eng., vol. 21, no. 3, pp. 1–9, 2021. DOI: 10.1007/s43452-021-00270-y.
  • C. V. Varanasi, et al., “Flux pinning enhancement in YBa2Cu3O7-x films with BaSnO3 nanoparticles,” Supercond. Sci. Technol., vol. 19, no. 10, pp. L37–L41, 2006. DOI: 10.1088/0953-2048/19/10/L01.
  • A. Tsuruta, et al., “Dependence of BaMO3 (M = Zr, Sn, Hf) materials on lattice stress and Tc in BaMO3-doped SmBa2Cu3Oy thin films,” J. Cryo. Soc. Jpn., vol. 50, no. 5, pp. 224–231, 2015. DOI: 10.2221/jcsj.50.224.
  • S. H. Wee, et al., “Self-assembly of nanostructured, complex, multication films via spontaneous phase separation and strain-driven ordering,” Adv. Funct. Mater., vol. 23, no. 15, pp. 1912–1918, 2013. DOI: 10.1002/adfm.201202101.
  • J. Z. Wu and J. J. Shi, “Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films,” Supercond. Sci. Technol., vol. 30, no. 10, pp. 103002, 2017. DOI: 10.1088/1361-6668/aa8288.
  • J. Xiong, et al., “Effect of processing conditions and methods on residual stress in CeO2 buffer layers and YBCO superconducting films,” Physica C, vol. 442, no. 2, pp. 124–128, 2006. DOI: 10.1016/j.physc.2006.05.024.
  • J. J. Shi and J. Z. Wu, “Micromechanical model for self-organized secondary phase oxide nanorod arrays in epitaxial YBa2Cu3O7-δ films,” Philos. Mag, vol. 92, no. 23, pp. 2911–2922, 2012. DOI: 10.1080/14786435.2012.682173.
  • J. J. Shi and J. Z. Wu, “Influence of the lattice strain decay on the diameter of self-assembled secondary phase nanorod array in epitaxial films,” J. Appl. Phys, vol. 118, no. 16, pp. 439, 2015. DOI: 10.1063/1.4934640.
  • X. Duan, F. Xue and X. Gou, “Effect of thermal strain on the formation of the nanostructure in YBCO films with doped nanorods,” Physica C, vol. 609, no. 15, pp. 1354259, 2023. DOI: 10.1016/j.physc.2023.1354259.
  • W. Q. Chen, J. Zhu and X. Y. Li, “General solutions for elasticity of transversely isotropic materials with thermal and other effects: a review,” J. Therm. Stresses, vol. 42, no. 1, pp. 90–106, 2019. DOI: 10.1080/01495739.2018.1527736.
  • E. Moreira, et al., “Structural and electronic properties of SrxBa1- xSnO3 from first principles calculations,” J. Solid State Chem., vol. 187, pp. 186–194, 2012. DOI: 10.1016/j.jssc.2011.12.027.
  • A. Bouhemadou and K. Haddadi, “Structural, elastic, electronic and thermal properties of the cubic perovskite-type BaSnO3,” Solid State Sci., vol. 12, no. 4, pp. 630–636, 2010. DOI: 10.1016/j.solidstatesciences.2010.01.020.
  • R. Terki, H. Feraoun, G. Bertrand and H. Aourag, “Full potential calculation of structural, elastic and electronic properties of BaZrO3 and SrZrO3,” Phys. Status Solidi B, vol. 242, no. 5, pp. 1054–1062, 2005. DOI: 10.1002/pssb.200402142.
  • A. Bouhemadou, F. Djabi and R. Khenata, “First principles study of structural, elastic, electronic and optical properties of the cubic perovskite BaHfO3,” Phys. Lett. A, vol. 372, no. 24, pp. 4527–4531, 2008. DOI: 10.1016/j.physleta.2008.04.015.
  • H. Zhao, A. Chang and Y. Wang, “Structural, elastic, and electronic properties of cubic perovskite BaHfO3 obtained from first principles,” Physica B, vol. 404, no. 16, pp. 2192–2196, 2009. DOI: 10.1016/j.physb.2009.04.011.
  • Q. J. Liu, Z. T. Liu, L. P. Feng and H. Tian, “Mechanical, electronic, chemical bonding and optical properties of cubic BaHfO3: first-principles calculations,” Physica B, vol. 405, no. 18, pp. 4032–4039, 2010. DOI: 10.1016/j.physb.2010.06.051.
  • M. Lei, et al., “Elastic constants of a monocrystal of superconducting YBa2Cu3O7-δ,” Phys. Rev. B Condens Matter, vol. 47, no. 10, pp. 6154–6156, 1993. DOI: 10.1103/PhysRevB.47.6154.
  • T. Maekawa, K. Kurosaki and S. Yamanaka, “Thermal and mechanical properties of polycrystalline BaSnO3,” J. Alloy. Compd, vol. 416, no. 1-2, pp. 214–217, 2006. DOI: 10.1016/j.jallcom.2005.08.032.
  • S. Yamanaka, et al., “Thermophysical properties of BaZrO3 and BaCeO3,” J. Alloy. Compd., vol. 359, no. 1–2, pp. 109–113, 2003. DOI: 10.1016/S0925-8388(03)00214-7.
  • J. Kawashima, Y. Yamada and I. Hirabayashi, “Critical thickness and effective thermal expansion coefficient of YBCO crystalline film,” Physica C, vol. 306, no. 1–2, pp. 114–118, 1998. DOI: 10.1016/S0921-4534(98)00350-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.