34
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A novel approach for generalized Green-Naghdi-type electro-magneto-thermo-hyperelasticity wave propagation and reflection investigations in near-incompressible layers under shock loads

, ORCID Icon & ORCID Icon
Pages 743-765 | Received 05 May 2022, Accepted 07 Nov 2022, Published online: 18 Apr 2024

References

  • E. Yarali, M. Baniasadi, M. Bodaghi and M. Baghani, “3D constitutive modeling of electro-magneto-visco-hyperelastic elastomers: a semi-analytical solution for cylinders under large torsion–extension deformation,” Smart Mater. Struct., vol. 29, no. 8, pp. 085031, 2020. DOI: 10.1088/1361-665X/ab9236.
  • E. Yarali, R. Noroozi, A. Yousefi, M. Bodaghi and M. Baghani, “Multi-trigger thermo-electro-mechanical soft actuators under large deformations,” Polymers (Basel), vol. 12, no. 2, pp. 489, 2020. DOI: 10.3390/polym12020489.
  • S. Lantean, et al., “3D printing of magnetoresponsive polymeric materials with tunable mechanical and magnetic properties by digital light processing,” Adv. Mater. Tech., vol. 4, no. 11, pp. 1900505, 2019. DOI: 10.1002/admt.201900505.
  • C. M. González-Henríquez, M. A. Sarabia-Vallejos and J. Rodriguez-Hernandez, “Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications,” Progress Polymer Sci., vol. 94, pp. 57–116, 2019. DOI: 10.1016/j.progpolymsci.2019.03.001.
  • D. Kumar and S. Sarangi, “Electro-magnetostriction under large deformation: modeling with experimental validation,” Mech. Mater., vol. 128, pp. 1–10, 2019. DOI: 10.1016/j.mechmat.2018.10.001.
  • Z. Alameh, S. Yang, Q. Deng and P. Sharma, “Emergent magnetoelectricity in soft materials, instability, and wireless energy harvesting,” Soft Mater., vol. 14, no. 28, pp. 5856–5868, 2018. DOI: 10.1039/c8sm00587g.
  • D. Garcia-Gonzalez, “Magneto-visco-hyperelasticity for hard-magnetic soft materials: theory and numerical applications,” Smart Mater. Struct., vol. 28, no. 8, pp. 085020, 2019. DOI: 10.1088/1361-665X/ab2b05.
  • I. Niyonzima, Y. Jiao and J. Fish, “Modeling and simulation of nonlinear electro-thermo-mechanical continua with application to shape memory polymeric medical devices,” Comput. Methods Appl. Mech. Eng., vol. 350, pp. 511–534, 2019. DOI: 10.1016/j.cma.2019.03.003.
  • G. A. Holzapfel and J. C. Sirno, “Entropy elasticity of isotropic rubber-like solids at finite strains,” J. Comput. Methods Appl. Mech. Eng., vol. 132, no. 1–2, pp. 17–44, 1996. DOI: 10.1016/0045-7825(96)01001-8.
  • S. Lejeunes and D. Eyheramendy, “Hybrid free energy approach for nearly incompressible behaviors at finite strain,” Continuum Mech. Thermodyn., vol. 32, no. 2, pp. 387–401, 2020. DOI: 10.1007/s00161-018-0680-4.
  • A. Taghipour, J. Parvizian, S. Heinze and A. Düster, “The finite cell method for nearly incompressible finite strain plasticity problems with complex geometries,” Comput. Math. Appli., vol. 75, no. 9, pp. 3298–3316, 2018. DOI: 10.1016/j.camwa.2018.01.048.
  • A. G. Korba and M. E. Barkey, “New model for hyper-elastic materials behavior with an application on natural rubber,” ASME 2017 12th International Manufacturing Science and Engineering Conference, pp. 10. DOI: 10.1115/MSEC2017-2792.
  • C. Zhang, H. Y. Guo, B. Li and X. Q. Feng, “Disentangling longitudinal and shear elastic waves by neo-Hookean soft devices,” Appl. Phys. Lett., vol. 106, pp. 161903, 2015.
  • R. Stojanovic, S. Djuric and L. Vujosevic, “On finite thermal deformations,” Arch. Mech, Stosow., vol. 16, pp. 103–108, 1964.
  • D. Zhang and M. O. Starzewsk, “Thermoelastic waves in helical strands with Maxwell–Cattaneo heat conduction,” Theoret. Appl. Mech. Lett., vol. 9, no. 5, pp. 302–307, 2019. DOI: 10.1016/j.taml.2019.05.003.
  • M. Shariyat and A. Niknami, “Impact analysis of strain-rate-dependent composite plates with SMA wires in thermal environments: proposing refined coupled thermoelasticity constitutive, and contact models,” Compos. Struct., vol. 136, pp. 191–203, 2016. DOI: 10.1016/j.compstruct.2015.10.003.
  • F. Shakeriaski and M. Ghodrat, “Nonlinear response for a general form of thermoelasticity equation in mediums under the effect of temperature-dependent properties and short-pulse heating,” J. Therm. Anal. Calorim., vol. 147, no. 1, pp. 843–854, 2020. DOI: 10.1007/s10973-020-10290-0.
  • I. A. Abbas and H. M. Youssef, “Two-temperature generalized thermoelasticity under ramp-type heating by finite element method,” Meccanica, vol. 48, no. 2, pp. 331–339, 2013. DOI: 10.1007/s11012-012-9604-8.
  • Y. Kiani and M. R. Eslami, “Nonlinear generalized thermoelasticity of an isotropic layer based on Lord-Shulman theory,” European J. Mech. A/Solids, vol. 61, pp. 245–253, 2017. DOI: 10.1016/j.euromechsol.2016.10.004.
  • Y. J. Yu, Z. N. Xue and X. Tian, “A modified Green–Lindsay thermoelasticity with strain rate to eliminate the discontinuity,” Meccanica, vol. 53, no. 10, pp. 2543–2554, 2018. DOI: 10.1007/s11012-018-0843-1.
  • M. Shariyat and M. Ghafourinam, “Hygrothermomechanical creep and stress redistribution analysis of thick-walled FGM spheres with temperature and moisture dependent material properties and inelastic radius changes,” Int. J. Press Vessels Pip., vol. 169, pp. 94–114, 2019. DOI: 10.1016/j.ijpvp.2018.11.011.
  • M. Shariyat, S. Jahanshahi and H. Rahimi, “Nonlinear Hermitian generalized hygrothermoelastic stress and wave propagation analyses of thick FGM spheres exhibiting temperature, moisture, and strain-rate material dependencies,” Compos. Struct., vol. 229, pp. 111364, 2019. DOI: 10.1016/j.compstruct.2019.111364.
  • F. Shakeriaski, M. Ghodrat, J. E. Diaz and M. Behnia, “Recent advances in generalized thermoelasticity theory and the modified models: a review,” J. Comput. Des. Eng., vol. 8, no. 1, pp. 15–35, 2021. DOI: 10.1093/jcde/qwaa082.
  • A. Sur, S. Mondal and M. Kanoria, “Memory response on wave propagation in a thermoelastic plate due to moving band-type thermal loads and magnetic field,” Mech. Based Des. Struct. Mach., vol. 49, no. 2, pp. 172–193, 2019. DOI: 10.1080/15397734.2019.1672558.
  • M. A. Fahmy, “A new boundary element strategy for modeling and simulation of three-temperature nonlinear generalized micropolar-magneto-thermoelastic wave propagation problems in FGA structures,” Eng. Anal. Boundary Elem., vol. 108, pp. 192–200, 2019. DOI: 10.1016/j.enganabound.2019.08.006.
  • M. Rafiq, et al., “Harmonic waves solution in dual-phase-lag magneto-thermoelasticity,” Open Phy., vol. 17, no. 1, pp. 8–15, 2019. DOI: 10.1515/phys-2019-0002.
  • R. Stojanovic, “On the stress relation in non-linear thermoelasticity,” Int. J. Non-Linear Mech., vol. 4, pp. 217–233, 1969. DOI: 10.1016/0020-7462(69)90002-X.
  • A. Lion, Thermomechanik von Elastomeren. Experimente und Materialtheorie. Habilitation, Institute of Mechanics, 2000. University of Kassel. Report No. 1/2000.
  • V. A. Lubarda, “Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity, and biomechanics,” Appl. Mech. Rev., vol. 57, no. 2, pp. 95–108, 2004. DOI: 10.1115/1.1591000.
  • A. W. Hamkar and S. Hartmann, “Theoretical and numerical aspects in weak-compressible finite strain thermo-elasticity,” J. Theor. Appl. Mech., vol. 50, pp. 3–22, 2012.
  • H. Darijani and R. Naghdabadi, “Kinematics and kinetics modeling of thermoelastic continua based on the multiplicative decomposition of the deformation gradient,” Int. J. Eng. Sci., vol. 62, pp. 56–69, 2013. DOI: 10.1016/j.ijengsci.2012.07.001.
  • S. Lu and K. Pister, “Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids,” Int. J. Solids Struct., vol. 11, no. 7–8, pp. 927–934, 1975. DOI: 10.1016/0020-7683(75)90015-3.
  • P. Haupt and C. Tsakmakis, “On the application of dual variables in continuum mechanics.” J. Contin. Mech. Thermodyn., vol. 1, no. 3, pp. 165–196, 1989. DOI: 10.1007/BF01171378.
  • H. Baaser, C. Hopmann and A. Schobel, “Reformulation of strain invariants at incompressibility,” Arch. Appl. Mech., vol. 83, no. 2, pp. 273–280, 2013. DOI: 10.1007/s00419-012-0652-2.
  • D. W. Nicholson, B. Lin and F. Orlando, “Theory of thermohyperelasticity for near-incompressible elastomers,” Acta Mechanica, vol. 116, no. 1–4, pp. 15–28, 1996. DOI: 10.1007/BF01171417.
  • R. W. Ogden, “Large deformation isotropic elasticity––on,” The Correlation of Theory and Experiment for Incompressible Rubberlike Solids, Proceedings of the Royal Society of London Series A, pp. 565–584, 1972.
  • J. C. Simo and R. L. Taylor, “Penalty function formulations for incompressible nonlinear elastostatics,” Comput. Meth. Appl. Mech. Eng., vol. 35, no. 1, pp. 107–118, 1982. DOI: 10.1016/0045-7825(82)90035-4.
  • J. C. Simo, R. L. Taylor and K. S. Pister, “Variational and projection methods for the volume constraint in finite deformation elastoplasticity,” Comput. Meth. Appl. Mech. Eng., vol. 51, no. 1–3, pp. 177–208, 1985. DOI: 10.1016/0045-7825(85)90033-7.
  • F. D. Murnaghan, “Mathematische Analyse multiplikativer Viskoplastizit€,” Doctoral Thesis, Department of Mathematics, 1951.
  • C. H. Liu, G. Hofstetter and H. A. Mang, “3D finite element analysis of rubber-like materials at finite strains,” Eng. Comput., vol. 11, no. 2, pp. 111–128, 1994. DOI: 10.1108/02644409410799236.
  • S. Hartmann, “Computation in finite strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations,” Comput. Meth. Appl. Mech. Eng., vol. 191, no. 13–14, pp. 1439–1470, 2002. DOI: 10.1016/S0045-7825(01)00332-2.
  • T. Netz and S. Hartmann, “A monolithic finite element approach using high-order schemes in time and space applied to finite strain thermo-viscoelasticity,” J. Comput. Math. Appli., vol. 70, no. 7, pp. 1457–1480, 2015. DOI: 10.1016/j.camwa.2015.03.030.
  • M. Mirparizi and A. R. Fotuhi, “Nonlinear coupled thermo-hyperelasticity analysis of thermal and mechanical wave propagation in a finite domain,” Physica A, vol. 537, pp. 122755, 2020. DOI: 10.1016/j.physa.2019.122755.
  • M. Shariyat, “A rapidly convergent nonlinear transfinite element procedure for transient thermoelastic analysis of temperature-dependent functionally graded cylinders,” J. Solid Mech., vol. 1, pp. 313–327, 2009.
  • M. R. Eslami, Finite Elements Methods in Mechanics. Switzerland: Springer International Publishing, 2014.
  • M. Shariyat, “Propagation and interference of oppositely traveling generalized multi-fractional-order thermo-viscoelastic waves in discs with fractional-order constitutive and heat conduction models,” Waves Random Complex Media, pp. 1–29, 2022. DOI: 10.1080/17455030.2022.2056258.
  • M. Shariyat, “A nonlinear Hermitian transfinite element method for transient behavior analysis of hollow functionally graded cylinders with temperature-dependent materials under thermo-mechanical loads,” Int. J. Press. Vessels Pip., vol. 86, no. 4, pp. 280–289, 2009. DOI: 10.1016/j.ijpvp.2008.09.004.
  • M. Mirparizi, M. Fotuhi and M. Shariyat, “Nonlinear coupled thermoelastic analysis of thermal wave propagation in a functionally graded finite solid undergoing finite strain,” J. Therm. Anal. Calorim., vol. 139, no. 3, pp. 2309–2320, 2020. DOI: 10.1007/s10973-019-08652-4.
  • M. Mirparizi, M. Shariyat and A. R. Fotuhi, “Large deformation Hermitian finite element coupled thermoelasticity analysis of wave propagation and reflection in a finite domain,” J. Solid Mech., vol. 13, pp. 485–502, 2021.
  • F. Shakeriaski, M. Ghodrat, J. Escobedo-Diaz and M. Behnia, “The nonlinear thermo-hyperelasticity wave propagation analysis of near-incompressible functionally graded medium under mechanical and thermal loadings,” Arch. Appl. Mech., vol. 91, no. 7, pp. 3075–3094, 2021. DOI: 10.1007/s00419-021-01951-z.
  • M. Mirparizi, C. Zhang and M. J. Amiri, “One-dimensional electro-magneto-poro-thermoelastic wave propagation in a functionally graded medium with energy dissipation,” Phys. Scr., vol. 97, no. 4, pp. 045203, 2022. DOI: 10.1088/1402-4896/ac576f.
  • M. Mirparizi and S. M. Razavinasab, “Modified Green–Lindsay analysis of an electro-magneto elastic functionally graded medium with temperature dependency of materials,” Mech. Time-Depend Mater., vol. 26, no. 4, pp. 871–890, 2021. DOI: 10.1007/s11043-021-09517-w.
  • S. Bargmann, R. Denzer and P. Steinmann, “Material forces in non-classical thermo-hyperelasticity,” J. Therm. Stress., vol. 32, no. 4, pp. 361–393, 2009. DOI: 10.1080/01495730802637191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.