206
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of plant scents on nest box inspection by Eastern Rosella (Platycercus eximius)

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 165-176 | Received 22 Aug 2023, Accepted 22 Feb 2024, Published online: 28 Apr 2024

References

  • Abankwah, V., Deeming, D. C., and Pike, T. W. (2020). Avian olfaction: A review of the recent literature. Comparative Cognition & Behavior Reviews 15, 149–161. doi:10.3819/CCBR.2020.150005
  • Amo, L., Galván, I., Tomás, G., and Sanz, J. J. (2008). Predator odour recognition and avoidance in a songbird. Functional Ecology 22(2), 289–293. doi:10.1111/j.1365-2435.2007.01361.x
  • Amo, L., López-Rull, I., Pagán, I., and García, C. M. (2015). Evidence that the house finch (Carpodacus mexicanus) uses scent to avoid omnivore mammals. Revista Chilena de Historia Natural 88(1), 5. doi:10.1186/s40693-015-0036-4
  • Amo, L., Tomás, G., Parejo, D., Avilés, J. M., and Ravel, N. (2014). Are female starlings able to recognize the scent of their offspring? PLoS ONE 9(10), e109505. doi:10.1371/journal.pone.0109505
  • Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1), 1–48. doi:10.18637/jss.v067.i01
  • Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., and White, J. S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution 24, 127–135. doi:10.1016/j.tree.2008.10.008
  • Boulton, A. J., and Williford, A. (2018). Analyzing skewed continuous outcomes with many zeros: A tutorial for social work and youth prevention science researchers. Journal of the Society for Social Work and Research 9(4), 721–740. doi:10.1086/701235
  • Brooks, M., Kristensen, K., van Benthem, K., Magnusson, A., Berg, C. W., Nielsen, A., et al. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9(2), 378–400. doi:10.32614/RJ-2017-066
  • Callan, M. N., Krix, D., McLean, C. M., Murray, B. R., and Webb, J. K. (2023). Thermal profiles of chainsaw hollows and natural hollows during extreme heat events. Biology 12(3), 361. doi:10.3390/biology12030361
  • Caspers, B. A., Hagelin, J. C., Paul, M., Bock, S., Willeke, S., and Krause, E. T. (2017). Zebra finch chicks recognise parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. Scientific Reports 7(1), 12859. doi:10.1038/s41598-017-13110-y
  • Caspers, B. A., and Krause, E. T. (2011). Odour-based natal nest recognition in the zebra finch (Taeniopygia guttata), a colony-breeding songbird. Biology Letters 7(2), 184–186. doi:10.1098/rsbl.2010.0775
  • Cerveira, A. M., and Jackson, R. R. (2013). Love is in the air: Olfaction-based mate-odour identification by jumping spiders from the genus Cyrba. Journal of Ethology 31(1), 29–34. doi:10.1007/s10164-012-0345-x
  • Chapman, A. D. (2009). ‘Numbers of living species in Australia and the world.’ Department of the Environment, Water, Heritage and the Arts. Available at https://www.dcceew.gov.au/science-research/abrs/publications/other/numbers-living-species
  • Clark, L., and Mason, J. R. (1985). Use of nest material as insecticidal and anti-pathogenic agents by the European starling. Oecologia 67(2), 169–176. doi:10.1007/BF00384280
  • Clark, L., and Mason, J. R. (1987). Olfactory discrimination of plant volatiles by the European starling. Animal Behaviour 35(1), 227–235. doi:10.1016/S0003-3472(87)80228-2
  • Clark, L., and Mason, J. R. (1988). Effect of biologically active plants used as nest material and the derived benefit to starling nestlings. Oecologia 77, 174–180. doi:10.1007/BF00379183
  • Clark, L., and Smeraski, C. A. (1990). Seasonal shifts in odor acuity by starlings. Journal of Experimental Zoology 255(1), 22–29. doi:10.1002/jez.1402550105
  • Cunningham, S. J., Castro, I., and Potter, M. A. (2009). The relative importance of olfaction and remote touch in prey detection by North Island brown kiwis. Animal Behaviour 78(4), 899–905. doi:10.1016/j.anbehav.2009.07.015
  • De Groof, G., Gwinner, H., Steiger, S., Kempenaers, B., Van der Linden, A., and Hendricks, M. (2010). Neural correlates of behavioural olfactory sensitivity changes seasonally in European starlings. PLoS ONE 5(12), e14337. doi:10.1371/journal.pone.0014337
  • Devrnja, N., Milutinović, M., and Savić, J. (2022). When scent becomes a weapon - plant essential oils as potent bioinsecticides. Sustainability 14, 6847. doi:10.3390/su14116847
  • Dubiec, A., Góźdź, I., and Mazgajski, T. D. (2013). Green plant material in avian nests. Avian Biology Research 6(2), 133–146. doi:10.3184/175815513X13615363233558
  • Edwards, G. P., Piddington, K. C., and Paltridge, R. M. (1997). Field evaluation of olfactory lures for feral cats (Felis catus) in central Australia. Wildlife Research 24, 173–183. doi:10.1071/WR96013
  • Gibbons, P., and Lindenmayer, D. B. (2002). ‘Tree Hollows and Wildlife Conservation in Australia.’ (CSIRO: Collingwood, Victoria.)
  • Goldingay, R. L. (2009). Characteristics of tree hollows used by Australian birds and bats. Wildlife Research 36(5), 394–409. doi:10.1071/WR08172
  • Goldingay, R. L., Rohweder, D., and Taylor, B. D. (2020). Nest box contentions: Are nest boxes used by the species they target? Ecological Management & Restoration 21(2), 115–122. doi:10.1111/emr.12408
  • Golüke, S., Dörrenberg, S., Krause, E. T., Caspers, B. A., and Moskát, C. (2016). Female zebra finches smell their eggs. PLoS ONE 11(5), e0155513. doi:10.1371/journal.pone.0155513
  • Götmark, F. (1992). The effects of investigator disturbance on nesting birds. In ‘Current Ornithology.’ (Ed. D. M. Power.) pp. 63–104. (Springer: USA.)
  • Gwinner, H. (1997). The function of green plants in nests of European starlings (Sturnus vulgaris). Behaviour 134(5–6), 337–351. doi:10.1163/156853997X00575
  • Gwinner, H., and Berger, S. (2008). Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Animal Behaviour 75(3), 971–976. doi:10.1016/j.anbehav.2007.08.008
  • Gwinner, H., Capilla-Lasheras, P., Cooper, C., and Helm, B. (2018). ‘Green incubation’: Avian offspring benefit from aromatic nest herbs through improved parental incubation behaviour. Proceedings Biological Sciences 285, 20180376. doi:10.1098/rspb.2018.0376.
  • Gwinner, H., Oltrogge, M., Trost, L., and Nienaber, U. (2000). Green plants in starling nests: Effects on nestlings. Animal Behaviour 59(2), 301–309. doi:10.1006/anbe.1999.1306
  • Habitat Innovation and Management (n.d.). ‘Habitech nest boxes.’ Available at https://www.habitatinnovation.com.au/habitech-nest-boxes [Verified 12 May 2023].
  • Hanke, P. U., and Dickman, C. R. (2013). Sniffing out the stakes: Hair-snares for wild cats in arid environments. Wildlife Research 40(1), 45–51. doi:10.1071/WR12210
  • Hansell, M. (2000). ‘Bird Nests and Construction Behaviour.’ (Cambridge University press: Cambridge, UK.)
  • Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., et al. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794. doi:10.7717/peerj.4794
  • Hartig, F. (2017). ‘Package ‘DHARMa’.’ Available at https://florianhartig.github.io/DHARMa/ [Verified 20 January 2023].
  • Heinsohn, R., Webb, M., Lacy, R., Terauds, A., Alderman, R., and Stojanovic, D. (2015). A severe predator-induced population decline predicted for endangered, migratory swift parrots (Lathamus discolor). Biological Conservation 186, 75–82. doi:10.1016/j.biocon.2015.03.006.
  • Hunter, J. T. (2015). Seasonality of climate drives the number of tree hollows in eastern Australia: Implications of a changing climate. International Journal of Ecology 2015, 190637. doi:10.1155/2015/190637
  • Kim, S.-I., Yi, J.-H., Tak, J.-H., and Ahn, Y.-J. (2004). Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae). Veterinary Parasitology 120, 297–304. doi:10.1016/j.vetpar.2003.12.016.
  • Krause, E. T., Brummel, C., Kohlwey, S., Baier, M. C., Müller, C., Bonadonna, F., and Caspers, B. A. (2014). Differences in olfactory species recognition in the females of two Australian songbird species. Behavioral Ecology and Sociobiology 68(11), 1819–1827. doi:10.1007/s00265-014-1791-y
  • Krause, E. T., Caspers, B. A., and Zeil, J. (2012). Are olfactory cues involved in nest recognition in two social species of estrildid finches? PLoS ONE 7(5), e36615. doi:10.1371/journal.pone.0036615
  • Krause, E. T., Krüger, O., Kohlmeier, P., and Caspers, B. A. (2012). Olfactory kin recognition in a songbird. Biology Letters 8(3), 327–329. doi:10.1098/rsbl.2011.1093
  • Lambrechts, M. M., and Dos Santos, A. (2000). Aromatic herbs in Corsican blue tit nests: The ‘potpourri’ hypothesis. Acta Oecologica 21(3), 175–178. doi:10.1016/S1146-609X(00)00122-3
  • Lindenmayer, D. B., Laurance, W. F., Franklin, J. F., Likens, G. E., Banks, S. C., Blanchard, W., et al. (2014). New policies for old trees: averting a global crisis in a keystone ecological structure. Conservation Letters 7(1), 61–69. doi:10.1111/conl.12013
  • Liu, X., Chen, Q., Wang, Z., Xie, L., and Xu, Z. (2008). Allelopathic effects of essential oil from Eucalyptus grandis × E. urophylla on pathogenic fungi and pest insects. Frontiers of Forestry in China 3(2), 232–236. doi:10.1007/s11461-008-0036-5
  • Lüdecke, D., Aust, F., Crawley, S., and Ben-Shachar, M. (2020). ‘Package ‘ggeffects’.’ Available at https://cran.r-project.org/web/packages/ggeffects/index.html [Verified 20 January 2023].
  • Manning, A. D., Gibbons, P., Fischer, J., Oliver, D. L., and Lindenmayer, D. B. (2013). Hollow futures? Tree decline, lag effects and hollow-dependent species. Animal Conservation 16(4), 395–403. doi:10.1111/acv.12006
  • McGuire, A., and Kleindorfer, S. (2007). Nesting success and apparent nest-adornment in diamond firetails (Stagonopleura guttata). Emu - Austral Ornithology 107(1), 44–51. doi:10.1071/MU06031
  • Meek, P., Ballard, G., Fleming, P., and Falzon, G. (2016). Are we getting the full picture? Animal responses to camera traps and implications for predator studies. Ecology and Evolution 6(10), 3216–3225. doi:10.1002/ece3.2111
  • Meek, P. D., Ballard, G.-A., Fleming, P. J. S., Schaefer, M., Williams, W., and Falzon, G. (2014). Camera traps can be heard and seen by animals. PLoS ONE 9, e110832. doi:10.1371/journal.pone.0110832
  • Mennerat, A., Perret, P., Bourgault, P., Blondel, J., Gimenez, O., Thomas, D. W., et al. (2009). Aromatic plants in nests of blue tits: Positive effects on nestlings. Animal Behaviour 77(3), 569–574. doi:10.1016/j.anbehav.2008.11.008
  • Mennerat, A. L., Perret, P., Caro, S. P., Heeb, P., and Lambrechts, M. M. (2008). Aromatic plants in blue tit cyanistes caeruleus nests: No negative effect on blood-sucking protocalliphora blow fly larvae. Journal of Avian Biology 39, 127–132. doi:10.1111/j.0908-8857.2008.04400.x
  • Merino, S., and Potti, J. (1995). Mites and blowflies decrease growth and survival in nestling pied flycatchers. Oikos 73(1), 95–103. doi:10.2307/3545730
  • Metcalf, E. C., Ross, T., and Metcalf, R. (1989). Nest structure of the collared sparrowhawk “Accipiter cirrocephalus”. Australian Bird Watcher 13, 32–34. doi:10.3316/informit.594205472050450.
  • Mihailova, M., Berg, M. L., Buchanan, K. L., and Bennett, A. T. D. (2014). Odour-based discrimination of subspecies, species and sexes in an avian species complex, the crimson rosella. Animal Behaviour 95, 155–164. doi:10.1016/j.anbehav.2014.07.012
  • Møller, A. P., Flensted-Jensen, E., Mardal, W., and Soler, J. J. (2013). Host-parasite relationship between colonial terns and bacteria is modified by a mutualism with a plant with antibacterial defenses. Oecologia 173(1), 169–178. doi:10.1007/s00442-013-2600-4
  • Newkirk, E. S. (2016). ‘CPW photo warehouse.’ Available at http://cpw.state.co.us/learn/Pages/ResearchMammalsSoftware.aspx [Verified 10 June 2022].
  • Pell, A. S., and Tidemann, C. R. (1997). The impact of two exotic hollow-nesting birds on two native parrots in savannah and woodland in eastern Australia. Biological Conservation 79(2–3), 145–153. doi:10.1016/S0006-3207(96)00112-7
  • Petit, C., Hossaert-McKey, M., Perret, P., Blondel, J., and Lambrechts, M. M. (2002). Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecology Letters 5(4), 585–589. doi:10.1046/j.1461-0248.2002.00361.x
  • Pires, B. A., Belo, A. D. F., Diamantino, F., Rabaça, J. E., and Merino, S. (2020). Development of nestling blue tits (Cyanistes caeruleus) is affected by experimental addition of aromatic plants. Avian Biology Research 13(3), 44–48. doi:10.1177/1758155920921075
  • Potvin, D. A., Opitz, F., Townsend, K. A., and Knutie, S. A. (2021). Use of anthropogenic-related nest material and nest parasite prevalence have increased over the past two centuries in Australian birds. Oecologia 196(4), 1207–1217. doi:10.1007/s00442-021-04982-z
  • Puvača, N., Čabarkapa, I., Petrović, A., Bursić, V., Prodanović, R., Soleša, D., and Lević, J. (2019). Tea tree (Melaleuca alternifolia) and its essential oil: antimicrobial, antioxidant and acaricidal effects in poultry production. World’s Poultry Science Journal 75, 235–246. doi:10.1017/S0043933919000229.
  • R Core Team. (2022). R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing: Vienna, Austria.)
  • Robertson, B. A., Ostfeld, R. S., and Keesing, F. (2017). Trojan females and Judas goats: Evolutionary traps as tools in wildlife management. BioScience 67(11), 983–994. doi:10.1093/biosci/bix116
  • Sarabian, C., Belais, R., and MacIntosh, A. J. J. (2018). Feeding decisions under contamination risk in bonobos. Philosophical Transactions of the Royal Society B: Biological Sciences 373, 20170195. doi:10.1098/rstb.2017.0195
  • Scott-Baumann, J. F., and Morgan, E. R. (2015). A review of the nest protection hypothesis: Does inclusion of fresh green plant material in birds’ nests reduce parasite infestation? Parasitology 142(8), 1016–1023. doi:10.1017/S0031182015000189
  • Sebei, K., Sakouhi, F., Herchi, W., Khouja, M. L., and Boukhchina, S. (2015). Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biological Research 48(1), 7. doi:10.1186/0717-6287-48-7
  • Stanbury, M., and Briskie, J. V. (2015). I smell a rat: Can New Zealand birds recognize the odor of an invasive mammalian predator? Current Zoology 61(1), 34–41. doi:10.1093/czoolo/61.1.34
  • Symonds, M. R. E., and Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65, 13–21. doi:10.1007/s00265-010-1037-6
  • Tomás, G., Merino, S., Martínez-de la Puente, J., Moreno, J., Morales, J., Lobato, E., et al. (2012). Interacting effects of aromatic plants and female age on nest-dwelling ectoparasites and blood-sucking flies in avian nests. Behavioural Processes 90(2), 246–253. doi:10.1016/j.beproc.2012.02.003
  • Turro, I., Porter, R. H., and Picard, M. (1994). Olfactory cues mediate food selection by young chicks. Physiology & Behavior 55(4), 761–767. doi:10.1016/0031-9384(94)90057-4
  • Veiga, J. P., Polo, V., and Viñuela, J. (2006). Nest green plants as a male status signal and courtship display in the spotless starling. Ethology 112(2), 196–204. doi:10.1111/j.1439-0310.2006.01148.x
  • Webster, C., Massaro, M., Michael, D. R., Bambrick, D., Riley, J. L., and Nimmo, D. G. (2018). Native reptiles alter their foraging in the presence of the olfactory cues of invasive mammalian predators. Royal Society Open Science 5(10), 180136. doi:10.1098/rsos.180136
  • Witzgall, P., Kirsch, P., and Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology 36(1), 80–100. doi:10.1007/s10886-009-9737-y
  • Yang, C., Ye, P., Huo, J., Møller, A. P., Liang, W., and Feeney, W. E. (2020). Sparrows use a medicinal herb to defend against parasites and increase offspring condition. Current Biology 30(23), R1411–R1412. doi:10.1016/j.cub.2020.10.021
  • Zabłotni, A., Kaliński, A., Bańbura, M., Glądalski, M., Markowski, M., Skwarska, J., et al. (2020). Experimental nest replacement suggests that the bacterial load of nests may mediate nestling physiological condition in cavity nesting great tits (Parus major). Journal of Ornithology 161(3), 819–828. doi:10.1007/s10336-020-01759-8
  • Zhang, J.-X., Wei, W., Zhang, J.-H., and Yang, W.-H. (2010). Uropygial gland-secreted alkanols contribute to olfactory sex signals in budgerigars. Chemical Senses 35(5), 375–382. doi:10.1093/chemse/bjq025