87
Views
0
CrossRef citations to date
0
Altmetric
Original Research Articles

Yin Yang 1 suppresses apoptosis and oxidative stress injury in SH-SY5Y cells by facilitating NR4A1 expression

, , &
Pages 115-123 | Received 12 Mar 2023, Accepted 06 Sep 2023, Published online: 03 Nov 2023

References

  • Ahmad, M. H., Fatima, M., Ali, M., Rizvi, M. A., & Mondal, A. C. (2021). Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson’s disease. Neuropharmacology, 201, 108831. doi:10.1016/j.neuropharm.2021.108831.
  • Cacabelos, R. (2017). Parkinson’s disease: From pathogenesis to pharmacogenomics. International Journal of Molecular Sciences, 18(3), 551. doi:10.3390/ijms18030551.
  • Cai, L. J., Tu, L., Li, T., Yang, X. L., Ren, Y. P., Gu, R., Zhang, Q., Yao, H., Qu, X., Wang, Q., & Tian, J. Y. (2020). Up-regulation of microRNA-375 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease by inhibiting SP1. Aging, 12(1), 672–689. doi:10.18632/aging.102649.
  • Church, F. C. (2021). Treatment options for motor and non-motor symptoms of Parkinson’s disease. Biomolecules, 11(4), 612. doi:10.3390/biom11040612.
  • Dietrichs, E., & Odin, P. (2017). Algorithms for the treatment of motor problems in Parkinson’s disease. Acta Neurologica Scandinavica, 136(5), 378–385. doi:10.1111/ane.12733.
  • Filomeni, G., De Zio, D., & Cecconi, F. (2015). Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death and Differentiation, 22(3), 377–388. doi:10.1038/cdd.2014.150.
  • Gao, C., Liu, J., Tan, Y., & Chen, S. (2020). Freezing of gait in Parkinson’s disease: Pathophysiology, risk factors and treatments. Translational Neurodegeneration, 9(1), 12. doi:10.1186/s40035-020-00191-5.
  • Geng, N., Chen, T., Chen, L., Zhang, H., Sun, L., Lyu, Y., Che, X., Xiao, Q., Tao, Z., & Shao, Q. (2022). Nuclear receptor Nur77 protects against oxidative stress by maintaining mitochondrial homeostasis via regulating mitochondrial fission and mitophagy in smooth muscle cell. Journal of Molecular and Cellular Cardiology, 170, 22–33. doi:10.1016/j.yjmcc.2022.05.007.
  • Guo, H., Golczer, G., Wittner, B. S., Langenbucher, A., Zachariah, M., Dubash, T. D., Hong, X., Comaills, V., Burr, R., Ebright, R. Y., Horwitz, E., Vuille, J. A., Hajizadeh, S., Wiley, D. F., Reeves, B. A., Zhang, J. M., Niederhoffer, K. L., Lu, C., Wesley, B., … Haber, D. A. (2021). NR4A1 regulates expression of immediate early genes, suppressing replication stress in cancer. Molecular Cell, 81(19), 4041–4058. doi:10.1016/j.molcel.2021.09.016.
  • Hafezi, S., & Rahmani, M. (2021). Targeting BCL-2 in cancer: Advances, challenges, and perspectives. Cancers, 13(6), 1292. doi:10.3390/cancers13061292.
  • Han, F., Liu, S., Jing, J., Li, H., Yuan, Y., & Sun, L.-P. (2020). Identification of high-frequency methylation sites in RNF180 promoter region affecting expression and their relationship with prognosis of gastric cancer. Cancer Management and Research, 12, 3389–3399. doi:10.2147/cmar.s246995.
  • Jennings, E., Elliot, T. A. E., Thawait, N., Kanabar, S., Yam-Puc, J. C., Ono, M., Toellner, K. M., Wraith, D. C., Anderson, G., & Bending, D. (2020). Nr4a1 and Nr4a3 reporter mice are differentially sensitive to T cell receptor signal strength and duration. Cell Reports, 33(5), 108328. doi:10.1016/j.celrep.2020.108328.
  • Kawamura, K., Higuchi, T., & Fujiwara, S. (2021). YAF2-mediated YY1-sirtuin6 interactions responsible for mitochondrial downregulation in aging tunicates. Molecular and Cellular Biology., 41(7), e0004721. doi:10.1128/MCB.00047-21.
  • Khachigian, L. M. (2018). The Yin and Yang of YY1 in tumor growth and suppression. International Journal of Cancer, 143(3), 460–465. doi:10.1002/ijc.31255.
  • Liu, L., Ma, D., Zhuo, L., Pang, X., You, J., & Feng, J. (2021). Progress and promise of Nur77-based therapeutics for central nervous system disorders. Current Neuropharmacology, 19(4), 486–497. doi:10.2174/1570159x18666200606231723.
  • Liu, T. Y., Yang, X. Y., Zheng, L. T., Wang, G. H., & Zhen, X. C. (2017). Activation of Nur77 in microglia attenuates proinflammatory mediators production and protects dopaminergic neurons from inflammation-induced cell death. Journal of Neurochemistry, 140(4), 589–604. doi:10.1111/jnc.13907.
  • Martinez-Ruiz, G. U., Morales-Sanchez, A., & Pacheco-Hernandez, A. F. (2021). Roles played by YY1 in embryonic, adult and cancer stem cells. Stem Cell Reviews and Reports, 17(5), 1590–1606. doi:10.1007/s12015-021-10151-9.
  • Pal, R., Tiwari, P. C., Nath, R., & Pant, K. K. (2016). Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurological Research, 38(12), 1111–1122. doi:10.1080/01616412.2016.1249997.
  • Palumbo-Zerr, K., Zerr, P., Distler, A., Fliehr, J., Mancuso, R., Huang, J., Mielenz, D., Tomcik, M., Fürnrohr, B. G., Scholtysek, C., Dees, C., Beyer, C., Krönke, G., Metzger, D., Distler, O., Schett, G., & Distler, J. H. (2015). Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nature Medicine, 21(2), 150–158. doi:10.1038/nm.3777.
  • Peng, X., Wang, W., Wang, W., & Qi, J. (2022). NR4A1 promotes oxidative stresses after myocardial ischemia reperfusion injury in aged mice. Experimental Gerontology, 162, 111742. doi:10.1016/j.exger.2022.111742.
  • Rothe, T., Ipseiz, N., Faas, M., Lang, S., Perez-Branguli, F., Metzger, D., Ichinose, H., Winner, B., Schett, G., & Krönke, G. (2017). The nuclear receptor Nr4a1 acts as a microglia rheostat and serves as a therapeutic target in autoimmune-driven central nervous system inflammation. Journal of Immunology (Baltimore, Md. : 1950)), 198(10), 3878–3885. doi:10.4049/jimmunol.1600638.
  • Salahudeen, A. K., Huang, H., Joshi, M., Moore, N. A., & Jenkins, J. K. (2003). Involvement of the mitochondrial pathway in cold storage and rewarming-associated apoptosis of human renal proximal tubular cells. American Journal of Transplantation : Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 3(3), 273–280. doi:10.1034/j.1600-6143.2003.00042.x.
  • Schapira, A. H. V., Chaudhuri, K. R., & Jenner, P. (2017). Non-motor features of Parkinson disease. Nature Reviews. Neuroscience, 18(7), 435–450. doi:10.1038/nrn.2017.62.
  • Stoddard-Bennett, T., & Reijo Pera, R. (2019). Treatment of Parkinson’s Disease through Personalized Medicine and Induced Pluripotent Stem Cells. Cells, 8(1), 26. doi:10.3390/cells8010026.
  • Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson’s disease. Journal of Neurochemistry, 139 Suppl 1, 318–324. doi:10.1111/jnc.13691.
  • Tolosa, E., Garrido, A., Scholz, S. W., & Poewe, W. (2021). Challenges in the diagnosis of Parkinson’s disease. The Lancet. Neurology, 20(5), 385–397. doi:10.1016/s1474-4422(21)00030-2.
  • Trist, B. G., Hare, D. J., & Double, K. L. (2019). Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell, 18(6), e13031. doi:10.1111/acel.13031.
  • Weintraub, D., Aarsland, D., Chaudhuri, K. R., Dobkin, R. D., Leentjens, A. F., Rodriguez-Violante, M., & Schrag, A. (2022). The neuropsychiatry of Parkinson’s disease: Advances and challenges. The Lancet. Neurology, 21(1), 89–102. doi:10.1016/s1474-4422(21)00330-6.
  • Wu, L., & Chen, L. (2018). Characteristics of Nur77 and its ligands as potential anticancer compounds (Review). Molecular Medicine Reports, 18(6), 4793–4801. doi:10.3892/mmr.2018.9515.
  • Xiao, X., Tan, Z., Jia, M., Zhou, X., Wu, K., Ding, Y., & Li, W. (2021). Long noncoding RNA SNHG1 knockdown ameliorates apoptosis, oxidative stress and inflammation in models of Parkinson’s disease by inhibiting the miR-125b-5p/MAPK1 axis. Neuropsychiatric Disease and Treatment, 17, 1153–1163. doi:10.2147/ndt.s286778.
  • Yan, J., Huang, J., Wu, J., Fan, H., Liu, A., Qiao, L., Shen, M., & Lai, X. (2020). Nur77 attenuates inflammatory responses and oxidative stress by inhibiting phosphorylated IκB-α in Parkinson’s disease cell model. Aging, 12(9), 8107–8119. doi:10.18632/aging.103128.
  • Yan, M. H., Wang, X., & Zhu, X. (2013). Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biology & Medicine, 62, 90–101. doi:10.1016/j.freeradbiomed.2012.11.014.
  • Yang, Y., Wu, F., Zhang, J., Sun, R., Li, F., Li, Y., Chang, S., Wang, L., Wang, X., Liu, L., & Huang, C. (2019). EGR1 interacts with DNMT3L to inhibit the transcription of miR-195 and plays an anti-apoptotic role in the development of gastric cancer. Journal of Cellular and Molecular Medicine, 23(11), 7372–7381. doi:10.1111/jcmm.14597.
  • Yang, Y., Xie, F., Qin, D., Zong, C., Han, F., Pu, Z., Liu, D., Li, X., Zhang, Y., Liu, Y., & Wang, X. (2018). The orphan nuclear receptor NR4A1 attenuates oxidative stress-induced β cells apoptosis via up-regulation of glutathione peroxidase 1. Life Sciences, 203, 225–232. doi:10.1016/j.lfs.2018.04.027.
  • Zhang, Z., & Yu, J. (2018). NR4A1 promotes cerebral ischemia reperfusion injury by repressing Mfn2-mediated mitophagy and inactivating the MAPK-ERK-CREB signaling pathway. Neurochemical Research, 43(10), 1963–1977. doi:10.1007/s11064-018-2618-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.