137
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental study on self–emulsification of shale crude oil by natural emulsifiers

, , , , , , & ORCID Icon show all
Pages 859-869 | Received 28 Jul 2022, Accepted 26 Feb 2023, Published online: 13 Mar 2023

References

  • Liu, R.; Lu, Y. Y.; Pu, W. F.; Lian, K. L.; Sun, L.; Du, D. J.; Song, Y. Y.; Sheng, J. J. Low–Energy Emulsification of Oil–in–Water Emulsions with Self Regulating Mobility via a Nanoparticle Surfactant. Ind. Eng. Chem. Res. 2020, 41, 18396–18411.
  • Pu, W. F.; He, M. M.; Yang, X. R.; Liu, R.; Shen, C. Experimental Study on the Key Influencing Factors of Phase Inversion and Stability of Heavy Oil Emulsion: Asphaltene, Resin and Petroleum Acid. Fuel 2022, 311, 122631. DOI: 10.1016/j.fuel.2021.122631.
  • Zhou, Y. Z.; Wang, D. M.; Wang, Z. P.; Cao, R. The Formation and Viscoelasticity of Pore–Throat Scale Emulsion in Porous Media. Petrol. Explor. Dev. 2017, 44, 110–116.
  • Sun, J. S.; Du, W. C.; Pu, X. L.; Zou, Z. Z.; Zhu, B. B. Synthesis and Evaluation of a Novel Hydrophobically Associating Polymer Based on Acrylamide for Enhanced Oil Recovery. Chem. Pap. 2015, 69, 1598–1607.
  • Fan, H. M.; Zheng, T.; Chen, H. L.; Huang, J.; Wei, Z. Y.; Kang, W. L.; Dai, C. L.; Zeng, H. B. Viscoelastic Surfactants with High Salt Tolerance, Fast–Dissolving Property, and Ultralow Interfacial Tension for Chemical Flooding in Offshore Oilfields. J. Surfactants Deterg. 2018, 21, 475–488. DOI: 10.1002/jsde.12042.
  • Ding, B.; Xiong, C. M.; Geng, X. F.; Guan, B. S.; Pan, J. J.; Xu, J. G.; Dong, J. F.; Zhang, C. M. Characteristics and EOR Mechanisms of Nanofluids Permeation Flooding for Tight Oil. Petrol. Explor. Dev. 2020, 47, 756–764.
  • Liu, R.; Lu, J. Y.; Pu, W. F.; Xie, Q.; Lu, Y. Y.; Du, D. J.; Yang, X. R. Synergetic Effect between in–Situ Mobility Control and Micro–Displacement for Chemical Enhanced Oil Recovery (CEOR) of a Surface–Active Nanofluid. J. Petrol. Sci. Eng. 2021, 205, 108983. DOI: 10.1016/j.petrol.2021.108983.
  • Yoon, K. Y.; Son, H. A.; Choi, S. K.; Kim, J. W.; Sung, W. M.; Kim, H. T. Core Flooding of Complex Nanoscale Colloidal Dispersions for Enhanced Oil Recovery by in Situ Formation of Stable Oil–in–Water Pickering Emulsions. Energ. Fuel 2016, 30, 2628–2635. DOI: 10.1021/acs.energyfuels.5b02806.
  • Ponce, F. R. V.; Carvalho, M. S.; Alvarado, V. Oil Recovery Modeling of Macro–Emulsion Flooding at Low Capillary Number. J. Petrol. Sci. Eng. 2014, 119, 112–122. DOI: 10.1016/j.petrol.2014.04.020.
  • Ponce, F. R. V.; Alvarado, V.; Carvalho, M. S. Water–Alternating–Macroemulsion Reservoir Simulation through Capillary Number–Dependent Modeling. J. Braz. Soc. Mech. Sci. 2017, 39, 4135–4145. DOI: 10.1007/s40430-017-0885-7.
  • Guillen, V. R.; Romero, M. I.; Carvalho, M. D. S. C.; Alvarado, V. Capillary–Driven Mobility Control in Macro Emulsion Flow in Porous Media. Int. J. Multiphas. Flow 2012, 43, 62–65. DOI: 10.1016/j.ijmultiphaseflow.2012.03.001.
  • Liu, Z. Y.; Li, Y. Q.; Luan, H. X.; Gao, W. B.; Guo, Y.; Chen, Y. H. Pore Scale and Macroscopic Visual Displacement of Oil–in–Water Emulsions for Enhanced Oil Recovery. Chem. Eng. Sci. 2019, 197, 404–414.
  • Zhao, W. Z.; Hu, S. Y.; Hou, L. H.; Yang, T.; Li, X.; Guo, B. C.; Yang, Z. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petrol. Explor. Dev. 2020, 47, 1–11.
  • Yang, Z.; Zou, C. N. “Exploring Petroleum inside Source Kitchen”: Connotation and Prospects of Source Rock Oil and Gas. Petrol. Explor. Dev. 2019, 46, 181–193.
  • Li, C. Y.; Zhang, Z. Q.; Lin, F.; Sheng, P. Initial Exploration of Fracturing Fluid Retention in Shale Reservoirs. Bull. Sci. Technol. 2016, 32, 31–35.
  • Liu, X. C.; Zhao, Y. X.; Li, Q. X.; Niu, J. P. Surface Tension, Interfacial Tension and Emulsification of Sodium Dodecyl Sulfate Extended Surfactant. Colloids Surf. A Physicochem. Eng. Aspects 2016, 494, 201–208.
  • Egbogah, E. O.; Dawe, R. A. Spontaneous Emulsification Aspect of Enhanced Oil Recovery. J. Chem. Technol. Biotechnol. 1985, 35, 132–144.
  • Rudin, J.; Bernard, C.; Wasan, D. T. Effect of Added Surfactant on Interfacial Tension and Spontaneous Emulsification in Alkali/Acidic Oil Systems. Ind. Eng. Chem. Res. 1994, 33, 1150–1158.
  • Duboué, J.; Bourrel, M.; Carreras, E. S.; Klimenko, A.; Agenet, N.; Passade-Boupat, N.; Lequeux, F. Auto–Emulsification of Water at the Crude Oil/Water Interface: A Mechanism Driven by Osmotic Gradient. Energ. Fuel 2019, 33, 7020–7027.
  • Araujo, S. B. D.; Merola, M.; Vlassopoulos, D.; Fuller, G. G. Droplet Coalescence and Spontaneous Emulsification in the Presence of Asphaltene Adsorption. Langmuir 2017, 33, 10501–10510.
  • Shi, S. L.; Wang, Y. F.; Wang, L. S.; Jin, Y. X.; Wang, T.; Wang, J. Potential of Spontaneous Emulsification Flooding for Enhancing Oil Recovery in High–Temperature and High–Salinity Oil Reservoir. J. Disper. Sci. Technol. 2015, 36, 660–669.
  • Chen, L. F.; Zhang, G. C.; Ge, J. J.; Jing, P.; Tang, J. Y.; Liu, Y. L. Research of the Heavy Oil Displacement Mechanism by Using Alkaline/Surfactant Flooding System. Colloids Surf. A Physicochem. Eng. Aspects 2013, 434, 63–71.
  • Song, W.; Kovscek, A. R. Spontaneous Clay Pickering Emulsification. Colloids Surf. A Physicochem. Eng. Aspects 2019, 577, 158–166.
  • Ganachaud, F.; Katz, J. L. Nanoparticles and Nanocapsules Created Using the Ouzo Effect: Spontaneous Emulsification as an Alternative to Ultrasonic and High–Shear Devices. ChemPhysChem. 2005, 6, 209–216. DOI: 10.1002/cphc.200400527.
  • Ilyin, S.; Arinina, M.; Polyakova, M.; Bondarenko, G.; Konstantinov, I.; Kulichikhin, V.; Malkin, A. Asphaltenes in Heavy Crude Oil: Designation, Precipitation, Solutions, and Effects on Viscosity. J. Petrol. Sci. Eng. 2016, 147, 211–217.
  • Osamah, A. A.; Abdulwahab, S. A. Heavy Crude Oil Viscosity Reduction and the Impact of Asphaltene Precipitation. Energ. Fuel 2013, 27, 7267–7276.
  • Choi, S.; Byun, D. H.; Lee, K.; Kim, J. D.; Nho, N. S. Asphaltene Precipitation with Partially Oxidized Asphaltene from Water/Heavy Crude Oil Emulsion. J. Petrol. Sci. Eng. 2016, 146, 21–29.
  • Li, Z. W.; Yin, S.; Tan, G. R.; Zhao, S.; Shi, Z. Y.; Jing, B.; Zhai, L.; Tan, Y. B. Synthesis and Properties of Novel Branched Polyether as Demulsifiers for Polymer Flooding. Colloid Polym. Sci. 2016, 294, 1943–1958.
  • Sunil, K.; Mohammad, A. D. Case Studies of Emulsion Behavior at Reservoir Conditions. SPE Prod. Oper. 2009, 23, 312–317.
  • Liu, D. W.; Li, C. X.; Zhang, X. P.; Yang, F.; Sun, G. Y.; Yao, B.; Zhang, H. Polarity Effects of Asphaltene Subfractions on the Stability and Interfacial Properties of Water–in–Model Oil Emulsions. Fuel 2020, 269, 117450.
  • Shi, C.; Zhang, L.; Xie, L.; Lu, X.; Liu, Q. X.; He, J. J.; Mantilla, C. A.; Van den Berg, F. G. A.; Zeng, H. B. Surface Interaction of Water–in–Oil Emulsion Droplets with Interfacially Active Asphaltenes. Langmuir 2017, 33, 1265–1274.
  • Zhang, L. Y.; Breen, P.; Xu, Z. H.; Masliyah, J. H. Asphaltene Films at a Toluene/Water Interface. Energ. Fuel 2007, 21, 274–285.
  • Mclean, J. D.; Kilpatrick, P. K. Effects of Asphaltene Solvency on Stability of Water–in–Crude–Oil Emulsions. J. Colloid Interf. Sci. 1997, 189, 242–253.
  • Pereira, J. C.; López, I.; Salas, R.; Silva, F.; Fernández, C.; Urbina, C.; López, J. C. Resins: The Molecules Responsible for the Stability/Instability Phenomena of Asphaltenes. Energ. Fuel 2007, 21, 1317–1321.
  • Anisimov, M. A.; Ganeeva, Y. M.; Gorodetskii, E. E.; Deshabo, V. A.; Kosov, V. I.; Kuryakov, V. N.; Yudin, D. I.; Yudin, I. K. Effects of Resins on Aggregation and Stability of Asphaltenes. Energ. Fuel 2014, 28, 6200–6209.
  • Wijaya, N.; Sheng, J. J. Effect of Desiccation on Shut-in Benefits in Removing Water Blockage in Tight Water-Wet Cores. Fuel 2019, 244, 314–323.
  • Galindoalvarez, J.; Sadtler, V.; Choplin, L.; Salager, J. Viscous Oil Emulsification by Catastrophic Phase Inversion: Influence of Oil Viscosity and Process Conditions. Ind. Eng. Chem. Res. 2011, 50, 5575–5583.
  • Hou, X. Y.; Sheng, J. J. Experimental Study on the Imbibition Mechanism of the Winsor Type I Surfactant System with Ultra-Low IFT in Oil-Wet Shale Oil Reservoirs by NMR. J. Petrol. Sci. Eng. 2022, 216, 110785.
  • Lord, D. L.; Demond, A. H.; Hayes, K. F. Effects of Organic Base Chemistry on Interfacial Tension, Wettability, and Capillary Pressure in Multiphase Subsurface Waste Systems. Transp. Porous Med. 2000, 38, 79–92.
  • Liu, J. R.; Sheng, J. J.; Huang, W. H. Experimental Investigation of Microscopic Mechanisms of Surfactant-Enhanced Spontaneous Imbibition in Shale Cores. Energ. Fuel 2019, 33, 7188–7199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.