99
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of the black soybean hulls agro-industrial waste for chloroquine removal from aqueous medium and treatment of multi-components

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 880-890 | Received 08 Oct 2022, Accepted 26 Feb 2023, Published online: 13 Mar 2023

References

  • Quesada, H. B.; Baptista, A. T. A.; Cusioli, L. F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere 2019, 222, 766–780. DOI: 10.1016/j.chemosphere.2019.02.009.
  • Hubetska, T.; Kobylinska, N.; García, J. R. Efficient Adsorption of Pharmaceutical Drugs from Aqueous Solution Using a Mesoporous Activated Carbon. Adsorption 2020, 26, 251–266. DOI: 10.1007/s10450-019-00143-0.
  • Corral-Bobadilla, M.; González-Marcos, A.; Alba-Elías, F.; de Santo Domingo, E. D. Valorization of Bio-Waste for the Removal of Aluminum from Industrial Wastewater. J. Clean. Prod. 2020, 264, 121608. DOI: 10.1016/j.jclepro.2020.121608.
  • Januário, E. F. D.; Vidovix, T. B.; Araújo, L. A. D.; Bergamasco, L.; Bergamasco, R.; Vieira, A. M. S. Investigation of Citrus reticulata Peels as an Efficient and Low-Cost Adsorbent for the Removal of Safranin Orange Dye. Environ. Technol. 2022, 43, 4315–4329. DOI: 10.1080/09593330.2021.1946601.
  • Quesada, H. B.; de Araújo, T. P.; Cusioli, L. F.; de Barros, M. A. S. D.; Gomes, R. G.; Bergamasco, R. Evaluation of Novel Activated Carbons from Chichá-Do-Cerrado (Sterculia striata St. Hil. et Naud) Fruit Shells on Metformin Adsorption and Treatment of a Synthetic Mixture. J. Environ. Chem. Eng. 2021, 9, 104914. DOI: 10.1016/j.jece.2020.104914.
  • Wilkinson, J.; Hooda, P. S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, Fate and Transformation of Emerging Contaminants in Water: An Overarching Review of the Field. Environ. Pollut. 2017, 231, 954–970. DOI: 10.1016/j.envpol.2017.08.032.
  • Karalis, V.; Ismailos, G.; Karatza, E. Chloroquine Dosage Regimens in Patients with COVID-19: Safety Risks and Optimization Using Simulations. Saf. Sci. 2020, 12, 104842. DOI: 10.1016/j.ssci.2020.104842.
  • Silva, R. C. M. C.; Tan, L.; Rodrigues, D. A.; Prestes, E. B.; Gomes, C. P.; Gama, A. M.; Oliveira, P. L. d.; Paiva, C. N.; Manoury, B.; Bozza, M. T. Chloroquine Inhibits Pro-Inflammatory Effects of Heme on Macrophages and in Vivo. Free Radic. Biol. Med. 2021, 173, 104–116. DOI: 10.1016/j.freeradbiomed.2021.07.028.
  • Dada, A. O.; Inyinbor, A. A.; Bello, O. S.; Tokula, B. E. Novel Plantain Peel Activated Carbon–Supported Zinc Oxide Nanocomposites (PPAC-ZnO-NC) for Adsorption of Chloroquine Synthetic Pharmaceutical Used for COVID-19 Treatment. Biomass Convers. Biorefin. 2021, 21, 1–13. DOI: 10.1007/s13399-021-01828-9.
  • Zou, L.; Dai, L.; Zhang, X.; Zhang, Z.; Zhang, Z. Hydroxychloroquine and Chloroquine: A Potential and Controversial Treatment for COVID-19. Arch. Pharm. Res. 2020, 43, 765–772. DOI: 10.1007/s12272-020-01258-7.
  • Maderova, Z.; Baldikova, E.; Pospiskova, K.; Safarik, I.; Safarikova, M. Removal of Dyes by Adsorption on Magnetically Modified Activated Sludge. Int. J. Environ. Sci. Technol. 2016, 13, 1653–1664. DOI: 10.1007/s13762-016-1001-8.
  • Eskikaya, O.; Gun, M.; Bouchareb, R.; Bilici, Z.; Dizge, N.; Ramaraj, R.; Balakrishnan, D. Photocatalytic Activity of Calcined Chicken Eggshells for Basic Red 2 and Reactive Red 180 Decolorization. Chemosphere 2022, 304, 135210. DOI: 10.1016/j.chemosphere.2022.135210.
  • Lofrumento, C.; Arci, F.; Carlesi, S.; Ricci, M.; Castellucci, E.; Becucci, M. Safranin-O Dye in the Ground State. A Study by Density Functional Theory, Raman, SERS and Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 677–684. DOI: 10.1016/j.saa.2014.07.051.
  • Preethi, S.; Sivasamy, A.; Sivanesan, S.; Ramamurthi, V.; Swaminathan, G. Removal of Safranin Basic Dye from Aqueous Solutions by Adsorption onto Corncob Activated Carbon. Ind. Eng. Chem. Res. 2006, 45, 7627–7632. DOI: 10.1021/ie0604122.
  • Usyskin, A.; Bukhanovsky, N.; Borisover, M. Interactions of Triclosan, Gemfibrozil and Galaxolide with Biosolid-Amended Soils: Effects of the Level and Nature of Soil Organic Matter. Chemosphere 2015, 138, 272–280. DOI: 10.1016/j.chemosphere.2015.05.095.
  • Zheng, G.; Yu, B.; Wang, Y.; Ma, C.; Chen, T. Removal of Triclosan during Wastewater Treatment Process and Sewage Sludge Composting—A Case Study in the Middle Reaches of the Yellow River. Environ. Int. 2020, 134, 105300. DOI: 10.1016/j.envint.2019.105300.
  • Giordano, E. D.; Bosio, B.; Camiscia, P.; Picó, G. A.; Valetti, N. W. Cellulose and Its Cationic Derivative Obtained from Soybean Hull as a Tool for the Remediation of Textile Dyes in Wastewater: Physicochemical Characterization and Molecular Mechanism Interaction. Biocatal. Agric. Biotechnol. 2021, 36, 102139. DOI: 10.1016/j.bcab.2021.102139.
  • Januário, E. F. D.; Vidovix, T. B.; Calsavara, M. A.; Bergamasco, R.; Vieira, A. M. S. Membrane Surface Functionalization by the Deposition of Polyvinyl Alcohol and Graphene Oxide for Dyes Removal and Treatment of a Simulated Wastewater. Chem. Eng. Process. Process Intensif. 2022, 170, 108725. DOI: 10.1016/j.cep.2021.108725.
  • Januário, E. F. D.; Vidovix, T. B.; Bergamasco, R.; Vieira, A. M. S. Performance of a Hybrid Coagulation/Flocculation Process Followed by Modified Microfiltration Membranes for the Removal of Solophenyl Blue Dye. Chem. Eng. Process. Process Intensif. 2021, 168, 108577. DOI: 10.1016/j.cep.2021.108577.
  • Vidovix, T. B.; Quesada, H. B.; Januário, E. F. D.; Bergamasco, R.; Vieira, A. M. S. Green Synthesis of Copper Oxide Nanoparticles Using Punica granatum Leaf Extract Applied to the Removal of Methylene Blue. Mater. Lett. 2019, 257, 126685. DOI: 10.1016/j.matlet.2019.126685.
  • Bhatti, H. N.; Safa, Y.; Yakout, S. M.; Shair, O. H.; Iqbal, M.; Nazir, A. Efficient Removal of Dyes Using Carboxymethyl Cellulose/Alginate/Polyvinyl Alcohol/Rice Husk Composite: Adsorption/Desorption, Kinetics and Recycling Studies. Int. J. Biol. Macromol. 2020, 150, 861–870. DOI: 10.1016/j.ijbiomac.2020.02.093.
  • Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. Pharmaceutical Residues in Environmental Waters and Wastewater: Current State of Knowledge and Future Research. Anal. Bioanal. Chem. 2011, 399, 251–275. DOI: 10.1007/s00216-010-4300-9.
  • Vidovix, T. B.; Januário, E. F. D.; Bergamasco, R.; Vieira, A. M. S. Bisfenol A Adsorption Using a Low-Cost Adsorbent Prepared from Residues of Babassu Coconut Peels. Environ. Technol. 2021, 42, 2372–2384. DOI: 10.1080/09593330.2019.1701568.
  • Varnosfaderani, S. M.; Razavi, S. H.; Fadda, A. M. Germination and Fermentation of Soybeans: Two Healthy Steps to Release Angiotensin Converting Enzyme Inhibitory Activity Compounds. Appl. Food Biotechnol. 2019, 6, 201–215. DOI: 10.22037/afb.v6i4.25475.
  • Xu, B. J.; Yuan, S. H.; Chang, S. K. C. Comparative Analyses of Phenolic Composition, Antioxidant Capacity, and Color of Cool Season Legumes and Other Selected Food Legumes. J. Food Sci. 2007, 72, S159–S166. DOI: 10.1111/j.1750-3841.2006.00261.x.
  • Ciabotti, S.; Juhász, A. C. P.; Mandarino, J. M. G.; Costa, L. L.; Corrêa, A. D.; Simão, A. A.; Santos, E. N. F. Chemical Composition and Lipoxygenase Activity of Soybean (Glycine max L. Merrill.) Genotypes, Specific for Human Consumption, with Different Tegument Colours. Brazilian J. Food Technol. 2019, 22, e2018003. DOI: 10.1590/1981-6723.00318.
  • Jia, L. I.; Enzan, C. H. E. N.; Haijia, S. U.; Tianwei, T. A. N. Biosorption of Pb2+ with Modified Soybean Hulls as Absorbent. Chin. J. Chem. Eng. 2011, 19, 334–339. DOI: 10.1016/S1004-9541(11)60173-0.
  • Módenes, A. N.; Hinterholz, C. L.; Neves, C. V.; Sanderson, K.; Trigueros, D. E.; Espinoza-Quiñones, F. R.; Kroumov, A. D. A New Alternative to Use Soybean Hulls on the Adsorptive Removal of Aqueous Dyestuff. Bioresour. Technol. 2019, 6, 175–182. DOI: 10.1016/j.biteb.2019.03.004.60173-0.
  • Giordano, E. D. V.; Brassesco, M. E.; Camiscia, P.; Picó, G. A.; Valetti, N. W. A New Alternative and Efficient Low-Cost Process for the Removal of Reactive Dyes in Textile Wastewater by Using Soybean Hull as Adsorbent. Water Air Soil Pollut. 2021, 232, 165. DOI: 10.1007/s11270-021-05085-4.
  • Cusioli, L. F.; Quesada, H. B.; Baptista, A. T.; Gomes, R. G.; Bergamasco, R. Soybean Hulls as a Low-Cost Biosorbent for Removal of Methylene Blue Contaminant. Environ. Prog. Sustain. Energy 2019, 39, e13328. DOI: 10.1002/ep.13328.
  • Honorio, J. F.; Veit, M. T.; Suzaki, P. Y. R.; Tavares, C. R. G.; Barbieri, J. C. Z.; de Oliveira Tavares, F.; Lied, E. B. Single and Multi-Component Removal of Natural Hormones from Aqueous Solutions Using Soybean Hull. J. Environ. Chem. Eng. 2022, 10, 107995. DOI: 10.1016/j.jece.2022.107995.
  • Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit Eng. Div. 1963, 89, 31–59. DOI: 10.1080/002689796173345.
  • Januário, E. F. D.; Fachina, Y. J.; Wernke, G.; Demiti, G. M. M.; Beltran, L. B.; Bergamasco, R.; Vieira, A. M. S. Application of Activated Carbon Functionalized with Graphene Oxide for Efficient Removal of COVID-19 Treatment-Related Pharmaceuticals from Water. Chemosphere 2022, 289, 133213. DOI: 10.1016/j.chemosphere.2021.133213.
  • Vidovix, T. B.; Januário, E. F. D.; Araújo, M. F.; Bergamasco, R.; Vieira, A. M. S. Investigation of Two New Low-Cost Adsorbents Functionalized with Magnetic Nanoparticles for the Efficient Removal of Triclosan and a Synthetic Mixture. Environ. Sci. Pollut. Res. Int. 2022, 29, 46813–46829. DOI: 10.1007/s11356-022-19187-x.
  • Souza, R. M.; Quesada, H. B.; Cusioli, L. F.; Fagundes-Klen, M. R.; Bergamasco, R. Adsorption of Non-Steroidal Anti-Inflammatory Drug (NSAID) by Agro-Industrial by-Product with Chemical and Thermal Modification: Adsorption Studies and Mechanism. Ind. Crops Prod. 2021, 161, 113200. DOI: 10.1016/j.indcrop.2020.113200.
  • Vidovix, T. B.; Quesada, H. B.; Bergamasco, R.; Vieira, M. F.; Vieira, A. M. S. Adsorption of Safranin-O Dye by Copper Oxide Nanoparticles Synthesized from Punica granatum Leaf Extract. Environ. Technol. 2022, 43, 3047–3063. DOI: 10.1080/09593330.2021.1914180.
  • Lopez-Velazquez, M. A.; Santes, V.; Balmaseda, J.; Torres-Garcia, E. Pyrolysis of Orange Waste: A Thermo-Kinetic Study. J. Anal. Appl. Pyrolysis 2013, 99, 170–177. DOI: 10.1016/j.jaap.2012.09.016.
  • Gao, J.; Si, C.; He, Y. Application of Soybean Residue (Okara) as a Low-Cost Adsorbent for Reactive Dye Removal from Aqueous Solution. Desalin. Water Treat. 2015, 53, 2266–2277. DOI: 10.1080/19443994.2013.865568.
  • Sills, D. L.; Gossett, J. M. Using FTIR to Predict Saccharification from Enzymatic Hydrolysis of Alkali‐Pretreated Biomasses. Biotechnol. Bioeng. 2012, 109, 353–362. DOI: 10.1002/bit.23314.
  • Quesada, H. B.; Cusioli, L. F.; de O Bezerra, C.; Baptista, A. T.; Nishi, L.; Gomes, R. G.; Bergamasco, R. Acetaminophen Adsorption Using a Low-Cost Adsorbent Prepared from Modified Residues of Moringa oleifera Lam. seed Husks. J. Chem. Technol. Biotechnol. 2019, 94, 3147–3157. DOI: 10.1002/jctb.6121.
  • Yu, C. A.; Yang, C. Y. Bio-Ionic Liquid Pretreatment and Ultrasound-Promoted Enzymatic Hydrolysis of Black Soybean Okara. J. Biosci. Bioeng. 2019, 127, 767–773. DOI: 10.1016/j.jbiosc.2018.12.007.
  • Vishal, C.; Singh, V. K. Adsorption of Safranin Dye from Aqueous Solutions Using a Low-Cost Agro-Waste Material Soybean Hull. Desalin. Water Treat. 2016, 57, 4122–4134. DOI: 10.1080/19443994.2014.991758.
  • Lima, T. L. C.; Feitosa, R. D. C.; dos Santos-Silva, E.; dos Santos-Silva, A. M.; Siqueira, E. M. D. S.; Machado, P. R. L.; da Silva-Júnior, A. A. Improving Encapsulation of Hydrophilic Chloroquine Diphosphate into Biodegradable Nanoparticles: A Promising Approach against Herpes Virus Simplex-1 Infection. Pharmaceutics 2018, 10, 255. DOI: 10.3390/pharmaceutics10040255.
  • Ma, J.; Zhao, J.; Zhu, Z.; Li, L.; Yu, F. Effect of Microplastic Size on the Adsorption Behavior and Mechanism of Triclosan on Polyvinyl Chloride. Environ. Pollut. 2019, 254, 113104. DOI: 10.1016/j.envpol.2019.113104.
  • Salihi, E. Ç.; Mahramanlıoğlu, M. Equilibrium and Kinetic Adsorption of Drugs on Bentonite: Presence of Surface Active Agents Effect. Appl. Clay Sci. 2014, 101, 381–389. DOI: 10.1016/j.clay.2014.06.015.
  • Fachina, Y. J.; Andrade, M. B. D.; Guerra, A. C. S.; Santos, T. R. T. D.; Bergamasco, R.; Vieira, A. M. S. Graphene Oxide Functionalized with Cobalt Ferrites Applied to the Removal of Bisphenol A: Ionic Study, Reuse Capacity and Desorption Kinetics. Environ. Technol. 2022, 43, 1388–1404. DOI: 10.1080/09593330.2020.1830183.
  • N’diaye, A. D.; Kankou, M. S. Modeling of Adsorption Isotherms of Pharmaceutical Products onto Various Adsorbents: A Short Review. J. Mater. Environ. Sci. 2020, 11, 1264–1276.
  • Streit, A. F.; Collazzo, G. C.; Druzian, S. P.; Verdi, R. S.; Foletto, E. L.; Oliveira, L. F.; Dotto, G. L. Adsorption of Ibuprofen, Ketoprofen, and Paracetamol onto Activated Carbon Prepared from Effluent Treatment Plant Sludge of the Beverage Industry. Chemosphere 2021, 262, 128322. DOI: 10.1016/j.chemosphere.2020.128322.
  • Mane, S.; Ponrathnam, S.; Chavan, N. Interfacial Tension Approach toward Drug Loading with Two-Dimensional Crosslinked Polymer Embedded Gold: Adsorption Kinetics Evaluation. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 168–175. DOI: 10.1080/00914037.2015.1074911.
  • Bezerra de Araujo, C. M.; Wernke, G.; Ghislandi, M. G.; Diório, A.; Vieira, M. F.; Bergamasco, R.; Alves da Motta Sobrinho, M.; Rodrigues, A. E. Continuous Removal of Pharmaceutical Drug Chloroquine and Safranin-O Dye from Water Using Agar-Graphene Oxide Hydrogel: Selective Adsorption in Batch and Fixed-Bed Experiments. Environ. Res. 2023, 216, 114425. DOI: 10.1016/j.envres.2022.114425.
  • Cusioli, L. F.; Quesada, H. B.; de Andrade, M. B.; Gomes, R. G.; Bergamasco, R. Application of a Novel Low-Cost Adsorbent Functioned with Iron Oxide Nanoparticles for the Removal of Triclosan Present in Contaminated Water. Microporous Mesoporous Mater. 2021, 325, 111328. DOI: 10.1016/j.micromeso.2021.111328.
  • Vidovix, T. B.; Januário, E. F. D.; Bergamasco, R.; Vieira, A. M. S. Evaluation of Agro-Industrial Residue Functionalized with Iron Oxide Magnetic Nanoparticles for Chloroquine Removal from Contaminated Water. Mater. Lett. 2022, 326, 132915. DOI: 10.1016/j.matlet.2022.132915.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.