102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Exploring the role of biopolymers and surfactants on the electrical conductivity of water-based CuO, Fe3O4, and hybrid nanofluids

, &
Pages 900-908 | Received 28 Dec 2022, Accepted 26 Feb 2023, Published online: 10 Mar 2023

References

  • Zhang, Y.; Ma, J.; Zhou, S.; Ma, F. Concentration-Dependent Toxicity Effect of SDBS on Swimming Behavior of Fresh.water Fishes. Environ. Toxicol. Pharmacol. 2015, 40, 77–85. DOI: 10.1016/j.etap.2015.05.005.
  • Isomaa, B.; Reuter, J.; Djupsund, B. M. The Subacute and Chronic Toxicity of Cetyltrimethylammonium Bromide (CTAB), a Cationic Surfactant, in the Rat. Arch. Toxicol. 1976, 35, 91–96. DOI: 10.1007/BF00372762.
  • Rosety, M.; Ordóñez, F. J.; Rosety-Rodríguez, M.; Rosety, J. M.; Rosety, I.; Carrasco, C.; Ribelles, A. Acute Toxicity of Anionic Surfactants Sodium Dodecyl Sulphate (SDS) and Linear Alkylbenzene Sulphonate (LAS) on the Fertilizing Capability of Gilthead (Sparus aurata L.) Sperm. Histol. Histopathol. 2001, 16, 839–843. DOI: 10.14670/HH-16.839.
  • Rebello, S.; Asok, A.; Mundayoor, S.; Jisha, M. Surfactants: Chemistry, Toxicity and Remediation. In Pollutant Diseases, Remediation and Recycling, Lichtfouse, E., et al., Eds.; Springer International Publishing: Switzerland, 2013, pp 277–320. DOI: 10.1007/978-3-319-02387-8_5.
  • Redon, A. Bio-Based Surfactants Present and Future, Sustainable Bio-Based Surfactants. Biocitech Romainville-Grand Paris, July 4 & 5, 2019.
  • Chen, C.; Qingjin, F.; Lei, M.; Sanwei, H.; Rengang, D.; Jun, Y. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Appl. Bio Mater. 2021, 4, 85–121. DOI: 10.1021/acsabm.0c00807.
  • Chen, T.; Cho, H.; Jwo, C.; Jeng, L. Performance Analysis of Al2O3/Water Nanofluid with Cationic Chitosan Dispersant. Adv. Mater. Sci. Eng.2013, 1–8. DOI: 10.1155/2013/686409.
  • Tilak, A.; Patil, R. Effect of Chitosan Surfactant Concentration on the Thermal Conductivity and Viscosity of Al2O3 + CNT Hybrid Nanofluid. J. Phys. Conf. Ser.2002, 1455, 012004. DOI: 10.1088/1742-6596/1455/1/012004.
  • Mane, N.; Tripathi S.; Hemadri V. Effect of Biopolymers on Stability and Properties of Aqueous Hybrid Metal Oxide Nanofluids in Thermal Applications. Colloids and Surfaces A: Physicochem. Eng. Aspects 2022, 643, 128777. DOI: 10.1016/j.colsurfa.2022.128777.
  • Agarwal, R.; Verma, K.; Agrawal, N.; Duchaniya, R.; Singh, R. Synthesis, Characterization, Thermal Conductivity and Sensitivity of CuO Nanofluids. Appl. Therm. Eng. 2016, 102, 1024–1036. DOI: 10.1016/j.applthermaleng.2016.04.051.
  • Suresh, S.; Venkitaraja, K.; Selvakumara, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/Water Hybrid Nanofluids Using Two Step Method and Its Thermophysical Properties. Colloids Surfaces A: Physicochem. Eng. Aspects 2011, 388, 41–48. DOI: 10.1016/j.colsurfa.2011.08.005.
  • Mane, N.; Hemadri V. Experimental Investigation of Stability, Properties and Thermo-Rheological Behaviour of Water-based Hybrid CuO and Fe3O4 Nanofluids. Int. J. Thermophys 2022, 43, 1–22. DOI: 10.1007/s10765-021-02938-2.
  • Sundar, L.; Singh, M.; Sousa, A. Enhanced Heat Transfer and Friction Factor of MWCNT–Fe3O4/Water Hybrid Nanofluids. Int. Commun. Heat Mass 2014, 52, 73–83. DOI: 10.1016/j.icheatmasstransfer.2014.01.012.
  • McMullen, P.; Mohapatra, S.; Donovan, E. Advances in PEM Fuel Cell Nano-Coolant. In Fuel Cell Seminar & Energy Exposition. Curran Associates Inc.: Columbus, Ohio, USA, 2013; p 344.
  • Minea, A. A. A Review on Electrical Conductivity of Nanoparticle-Enhanced Fluids. Nanomaterials 2019, 9, 1592. DOI: 10.3390/nano9111592.
  • Fal, J.; Sobczak, J.; Stagraczyński, R.; GawełŻyła, P. E. Electrical Conductivity of Titanium Dioxide Ethylene Glycol-Based Nanofluids: Impact of Nanoparticles Phase and Concentration. Powder Technol. 2022, 404, 117423. DOI: 10.1016/j.powtec.2022.117423.
  • Giwa, S. O.; Sharifpur, M.; Ahmadi, M. H.; Sohel Murshed, S. M.; Meyer, J. P. Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe2O3. Nanomaterials 2021, 11, 136. DOI: 10.3390/nano11010136.
  • Rilo, E.; Vila, J.; García-Garabal, S.; Varela, L.; Cabeza, O. Electrical Conductivity of Seven Binary Systems Containing 1-Ethyl-3-Methyl Imidazolium Alkyl Sulfate Ionic Liquids with Water or Ethanol at Four Temperatures. J. Phys. Chem. B 2013, 117, 1411–1418. DOI: 10.1021/jp309891j.
  • Ganguly, S.; Sikdar, S.; Basu, S. Experimental Investigation of the Effective Electrical Conductivity of Aluminum Oxide Nanofluids. Powder Technol. 2009, 196, 326–330. DOI: 10.1016/j.powtec.2009.08.010.
  • Fal, J.; Zyła, G. Effect of Temperature and Mass Concentration of SiO2 Nanoparticles on the Electrical Conductivity of Ethylene Glycol. Acta Phys. Pol. A 2017, 132, 155–157. DOI: 10.12693/APHYSPOLA.132.155.
  • Zyła, G.; Fal, J. Experimental Studies on Viscosity, Thermal and Electrical Conductivity of Aluminum Nitride–Ethylene Glycol (AlN–EG) Nanofluids. Thermochim. Acta 2016, 637, 11–16. DOI: 10.1016/j.tca.2016.05.006.
  • Zakaria, I.; Azmi, W.; Mohamed, W.; Mamat, R.; Najafi, G. Experimental Investigation of Thermal Conductivity and Electrical Conductivity of Al2O3 Nanofluid in Water—Ethylene Glycol Mixture for Proton Exchange Membrane Fuel Cell Application. Int. Commun. Heat Mass Transfer 2015, 61, 61–68. DOI: 10.1016/j.icheatmasstransfer.2014.12.015.
  • Kumar, R.; Sharma, T. Stability and Rheological Properties of Nanofluids Stabilized by SiO2 Nanoparticles and SiO2-TiO2 Nanocomposites for Oilfield Applications. Colloids Surf. A: Physicochem. Eng. Aspects 2018, 539, 171–183. DOI: 10.1016/j.colsurfa.2017.12.028.
  • Maxwell, J. C.A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873. DOI: 10.1038/007478a0.
  • Shoghl, S.; Jamali, J.; Moraveji, M.Electrical Conductivity, Viscosity, and Density of Different Nanofluids: An Experimental Study. Exp. Therm. Fluid Sci. 2016, 74, 339–346. DOI: 10.1016/j.expthermflusci.2016.01.004.
  • Sarojini, K.; Manoj, S.; Singh, P.; Pradeep, T.; Das, S. Electrical Conductivity of Ceramic and Metallic Nanofluids. Colloids Surf. A: Physicochem. Eng. Aspects 2013, 417, 39–46.
  • Mane, N.; Hemadri, V. Study of the Effect of Preparation Parameters on Thermal Conductivity of Metal Oxide Nanofluids Using Taguchi Method. Journal of Energy Systems 2021, 5, 149–164. DOI: 10.30521/jes.872530.
  • Kumar, P.; Kavitha, R. Regression Analysis for Thermal Properties of Al2O3/H2O Nanofluid Using Machine Learning Techniques. Heliyon 2020, 6, e03966. DOI: 10.1016/j.heliyon.2020.e03966.
  • Tahani, M.; Vakili, M.; Khosrojerdi, S. Experimental Evaluation and ANN Modeling of Thermal Conductivity of Graphene Oxide Nanoplatelets/Deionized Water Nanofluid. Int. Commun. Heat Mass Transfer 2016, 76, 358–365. DOI: 10.1016/j.icheatmasstransfer.2016.06.003.
  • Peng, Y.; Khaled, U.; Al-Rashed, A.; Meer, R.; Goodarzi, M.; Sarafraz, M. Potential Application of Response Surface Methodology (RSM) for the Prediction and Optimization of Thermal Conductivity of Aqueous CuO (II) Nanofluid: A Statistical Approach and Experimental Validation. Phys. A 2020, 554, 124353. DOI: 10.1016/j.physa.2020.124353.
  • Sarafraz, M. M.; Tlili, I.; Tian, Z.; Bakouri, M.; Safaei, M. R. Smart Optimization of a Thermosyphon Heat Pipe for an Evacuated Tube Solar Collector Using Response Surface Methodology (RSM), August 2019. Phys. A 2019, 534, 122146. DOI: 10.1016/j.physa.2019.122146.
  • Mukherjee, S.; Panda, S.; Mishra, P.; Chaudhuri, P. Enhancing Thermophysical Characteristics and Heat Transfer Potential of TiO2/Water Nanofluid. Int. J. Thermophys. 2020, 41, 1–33. DOI: 10.1007/s10765-020-02745-1.
  • Rao, K. J.; Kim, C. H.; Rhee, S. K. Statistical Optimization of Medium for the Production of Recombinant Hirudin from Saccharomyces cerevisiae Using Response Surface Methodology. Process Biochem. 2000, 35, 639–647. DOI: 10.1016/S0032-9592(99)00129-6.
  • Nalwa, H. S. Handbook of Nanostructured Materials and Nanotechnology; Academic Press: San Diego, CA, 2000, Vol. 2.
  • José, G. P.; Peter, I.; Hector, D.; Eduardo, S.; Ximena, Z. Effect of Triton X-100 Surfactant on the Interfacial Activity of Ionic Surfactants SDS, CTAB and SDBS at the Air/Water Interface: A Study Using Molecular Dynamic Simulations. Colloids Surf. A 2020, 603, 125284. DOI: 10.1016/j.colsurfa.2020.125284.
  • Yaumi, A. L.; Murtala, A. M.; Muhd, H. D.; Saleh, F. M. Determination of Physiochemical Properties of Gum Arabic as a Suitable Binder in Emulsion House Paint. Int. J. Environ. 2016, 5, 67–78. DOI: 10.3126/ije.v5i1.14565.
  • Bratovcic, A.; Nazdrajic, S.; Odobasic, A.; Sestan, I. The Influence of Type of Surfactant on Physicochemical Properties of Liquid Soap. Int. J. Mater. Chem. 2018, 8, 31–37. DOI: 10.5923/j.ijmc.20180802.02.
  • Abdo, h. S.; Elzatahry A.; Alharbi H. F.; Khalil K. A. Electrical Conductivity Behavior of Biopolymer Composites. In: Biopolymer Composites in Electronics, Sadasivuni, K. K., Ponnamma, D., Kim, J., Cabibihan, J.-J., AlMaadeed M. A., Eds.; Elsevier, 2017; pp 13–25. DOI: 10.1016/B978-0-12-809261-3.00002-4.
  • Firzlaff, D.; Kettwig, H.; Krönert, V.; Otto, P.; Harre, K.; Naumann, G. Biopolymers for Sensor and Electrical Applications. 41st International Spring Seminar on Electronics Technology (ISSE), Zlatibor, Serbia, 2018; pp 1–6. DOI: 10.1109/ISSE.2018.8443610.
  • Zhuze, V.; Kurchatov, V. The Electrical Conductivity of Copper Oxide. Phys. Z. Sowjetunion 1932, 2, 453–467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.