129
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Droplet-driven particle motions in fluids studied using coupled lattice Boltzmann method

, , , , , , & ORCID Icon show all
Pages 931-942 | Received 07 Sep 2022, Accepted 04 Mar 2023, Published online: 21 Mar 2023

References

  • Tekin, E.; Smith, P. J.; Schubert, U. S. Inkjet Printing as a Deposition and Patterning Tool for Polymers and Inorganic Particles. Soft Matter. 2008, 4, 703–713. DOI: 10.1039/b711984d.
  • Dickinson, E. Food Emulsions and Foams: Stabilization by Particles. Curr. Opin. Colloid Interface Sci. 2010, 15, 40–49. DOI: 10.1016/j.cocis.2009.11.001.
  • Bazazi, P.; Hejazi, S. H. Spontaneous Formation of Double Emulsions at Particle-Laden Interfaces. J. Colloid Interface Sci. 2021, 587, 510–521. DOI: 10.1016/j.jcis.2020.10.064.
  • Hunter, T. N.; Pugh, R. J.; Franks, G. V.; Jameson, G. J. The Role of Particles in Stabilising Foams and Emulsions. Adv. Colloid Interface Sci. 2008, 137, 57–81. DOI: 10.1016/j.cis.2007.07.007.
  • Tambe, D. E.; Sharma, M. M. Factors Controlling the Stability of Colloid-Stabilized Emulsions. J. Colloid Interface Sci. 1993, 157, 244–253. DOI: 10.1006/jcis.1993.1182.
  • Jansen, F.; Harting, J. From Bijels to Pickering Emulsions: A Lattice Boltzmann Study. Phys. Rev. E 2011, 83, 46707. DOI: 10.1103/PhysRevE.83.046707.
  • Koos, E. Capillary Suspensions: Particle Networks Formed through the Capillary Force. Curr. Opin. Colloid Interface Sci. 2014, 19, 575–584. DOI: 10.1016/j.cocis.2014.10.004.
  • Butt, H.-J. Controlling the Flow of Suspensions. Science 2011, 331, 868–869. DOI: 10.1126/science.1201543.
  • Aveyard, R.; Clint, J. H. Liquid Droplets and Solid Particles at Surfactant Solution Interfaces. J. Chem. Soc. Faraday Trans. 1995, 91, 2681–2697. DOI: 10.1039/ft9959102681.
  • Lee, Y. K.; Ahn, K. H. Particle Dynamics at Fluid Interfaces Studied by the Color Gradient Lattice Boltzmann Method Coupled with the Smoothed Profile Method. Phys. Rev. E 2020, 101, 53302. DOI: 10.1103/PhysRevE.101.053302.
  • Yang, B.; Chen, S. Simulation of Interaction between a Freely Moving Solid Particle and a Freely Moving Liquid Droplet by Lattice Boltzmann Method. Int. J. Heat Mass Transfer 2018, 127, 474–484. DOI: 10.1016/j.ijheatmasstransfer.2018.06.112.
  • Rothman, G.; Zanetti, Z. Lattice Boltzmann Model of Immiscible Fluids. Phy. Rev. A, at. Mol. Opt. Phys. 1991, 43, 4320–4327.
  • Chen, S. Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components. Phy. Rev. E: Stat. Phys. Plasmas, Fluids Relat. Interdiscip. Top. 1993, 47, 1815–1819.
  • Orlandini, S.; Yeomans, O. Lattice Boltzmann Simulations of Liquid-Gas and Binary Fluid Systems. Phy. Rev. E: Stat. Phys., Plasmas, Fluids Relat. Interdiscip. Top. 1996, 54, 5041–5052.
  • He, X.; Chen, S.; Zhang, R. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh–Taylor Instability. J. Comput. Phys. 1999, 152, 642–663. DOI: 10.1006/jcph.1999.6257.
  • Baakeem, S. S.; Bawazeer, S. A.; Mohamad, A. A. Comparison and Evaluation of Shan-Chen Model and Most Commonly Used Equations of State in Multiphase Lattice Boltzmann Method. Int. J. Multiphase Flow 2020, 128, 103290. DOI: 10.1016/j.ijmultiphaseflow.2020.103290.
  • Montessori, A.; Prestininzi, P.; La Rocca, M.; Succi, S. Entropic Lattice Pseudo-Potentials for Multiphase Flow Simulations at High Weber and Reynolds Numbers. Phys. Fluids 2017, 29, 92103. DOI: 10.1063/1.5001253.
  • Vasyliv, Y.; Lee, D.; Tower, T.; Ng, R.; Polashock, V.; Alexeev, A. Modeling Condensation on Structured Surfaces Using Lattice Boltzmann Method. Int. J. Heat Mass Transfer 2019, 136, 196–212. DOI: 10.1016/j.ijheatmasstransfer.2019.02.090.
  • Tiribocchi, A.; Montessori, A.; Bonaccorso, F.; Lauricella, M.; Succi, S. Shear Dynamics of Polydisperse Double Emulsions. Phys. Fluids 2021, 33, 47105. DOI: 10.1063/5.0046446.
  • Tiribocchi, A.; Montessori, A.; Lauricella, M.; Bonaccorso, F.; Succi, S.; Aime, S.; Milani, M.; Weitz, D. A. The Vortex-Driven Dynamics of Droplets within Droplets. Nat. Commun. 2021, 12, 82. DOI: 10.1038/s41467-020-20364-0.
  • Chen, H.-N.; Sun, D.-K.; Dai, T.; Zhu, M.-F. Modeling of the Interaction between Solidification Interface and Bubble Using the Lattice Boltzmann Method with Large Density Ratio. Acta Phys. Sin. 2013, 62, 120502. DOI: 10.7498/aps.62.120502.
  • Onishi, J.; Kawasaki, A.; Chen, Y.; Ohashi, H. Lattice Boltzmann Simulation of Capillary Interactions among Colloidal Particles. Comput. Math. Appl. 2008, 55, 1541–1553. DOI: 10.1016/j.camwa.2007.08.027.
  • Joshi, A. S.; Sun, Y. Wetting Dynamics and Particle Deposition for an Evaporating Colloidal Drop: A Lattice Boltzmann Study. Phys. Rev. E 2010, 82, 41401. DOI: 10.1103/PhysRevE.82.041401.
  • Ladd, A. J. C. Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 2. Numerical Results. J. Fluid Mech. 2006, 271, 311–339.
  • Ladd, A. J. C. Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation. J. Fluid Mech. 2006, 271, 285–309.
  • Davies, G. B.; Krueger, T.; Coveney, P. V.; Harting, J.; Bresme, F. Assembling Ellipsoidal Particles at Fluid Interfaces Using Switchable Dipolar Capillary Interactions. Adv. Mater. 2014, 26, 6715–6719. DOI: 10.1002/adma.201402419.
  • Shan, X.; Chen, H. Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components. Phys. Rev. E 1993, 47, 1815–1819. DOI: 10.1103/PhysRevE.47.1815.
  • Huang, H.; Sukop, M.; Lu, X. Multiphase Lattice Boltzmann Methods: Theory and Application; John Wiley & Sons: Hoboken, NJ, USA, 2015.
  • Wolf-Gladrow, D. A. Lattice Gas Cellular Automata and Lattice Boltzmann Models: An Introduction; Springer: Berlin Heidelberg: Berlin, Heidelberg, 2000; pp. 159–246
  • Huang, H.; Thorne, D. T.; Jr., Schaap, M. G.; Sukop, M. C. Proposed Approximation for Contact Angles in Shan-and-Chen-Type Multicomponent Multiphase Lattice Boltzmann Models. Phys. Rev. E 2007, 76, 66701. DOI: 10.1103/PhysRevE.76.066701.
  • Shan, X.; Doolen, G. Multicomponent Lattice-Boltzmann Model with Interparticle Interaction. J. Stat. Phys. 1995, 81, 379–393. DOI: 10.1007/BF02179985.
  • Nakayama, Y.; Yamamoto, R. Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions. Phys. Rev. E 2005, 71, 36707. DOI: 10.1103/PhysRevE.71.036707.
  • Lee, Y. K.; Ahn, K. H.; Lee, S. J. Local Shear Stress and Its Correlation with Local Volume Fraction in Concentrated non-Brownian Suspensions: Lattice Boltzmann Simulation. Phys. Rev. E 2014, 90, 62317. DOI: 10.1103/PhysRevE.90.062317.
  • Lee, Y. K.; Nam, J.; Hyun, K.; Ahn, K. H.; Lee, S. J. Rheology and Microstructure of non-Brownian Suspensions in the Liquid and Crystal Coexistence Region: Strain Stiffening in Large Amplitude Oscillatory Shear. Soft Matter 2015, 11, 4061–4074. DOI: 10.1039/C5SM00180C.
  • Lee, Y. K.; Ahn, K. H. A Novel Lattice Boltzmann Method for the Dynamics of Rigid Particles Suspended in a Viscoelastic Medium. J. Non-Newtonian Fluid Mech. 2017, 244, 75–84. DOI: 10.1016/j.jnnfm.2017.04.007.
  • Lee, Y. K.; Porter, C. L.; Diamond, S. L.; Crocker, J.; C.; Sinno, T. Deposition of Sticky Spheres in Channel Flow: Modeling of Surface Coverage Evolution Requires Accurate Sphere-Sphere Collision Hydrodynamics. J. Colloid Interface Sci. 2018, 530, 383–393. DOI: 10.1016/j.jcis.2018.06.097.
  • Jafari, S.; Yamamoto, R.; Rahnama, M. Lattice-Boltzmann Method Combined with Smoothed-Profile Method for Particulate Suspensions. Phys. Rev. E 2011, 83, 26702. DOI: 10.1103/PhysRevE.83.026702.
  • Banitabaei, S. A.; Amirfazli, A. Droplet Impact onto a Solid Sphere: Effect of Wettability and Impact Velocity. Phys. Fluids 2017, 29, 62111. DOI: 10.1063/1.4990088.
  • Mitra, S.; Evans, G. M.; Doroodchi, E.; Pareek, V.; Joshi, J. B. Interactions in Droplet and Particle System of near Unity Size Ratio. Chem. Eng. Sci. 2017, 170, 154–175. DOI: 10.1016/j.ces.2017.03.059.
  • Mitra, S.; Sathe, M. J.; Doroodchi, E.; Utikar, R.; Shah, M. K.; Pareek, V.; Joshi, J. B.; Evans, G. M. Droplet Impact Dynamics on a Spherical Particle. Chem. Eng. Sci. 2013, 100, 105–119. DOI: 10.1016/j.ces.2013.01.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.