1,595
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Franz diffusion cell and its implication in skin permeation studies

, , , , &
Pages 943-956 | Received 09 Dec 2022, Accepted 04 Mar 2023, Published online: 29 Mar 2023

References

  • Kajbafvala, A.; Salabat, A. Microemulsion and Microemulsion Gel Formulation for Transdermal Delivery of Rutin: Optimization, in-Vitro/Ex-Vivo Evaluation and SPF Determination. J. Dispers. Sci. Technol. 2021, 43, 1–16.
  • Jasti, B. R.; Abraham, W.; Ghosh, T. K. Transdermal and Topical Drug Delivery Systems. In Theory and Practice of Contemporary Pharmaceutics; CRC Press; 2021, pp. 423–454
  • Sabbagh, F.; Kim, B. S. Recent Advances in Polymeric Transdermal Drug Delivery Systems. J. Control Release 2022, 341, 132–146. DOI: 10.1016/j.jconrel.2021.11.025.
  • Wiedersberg, S.; Guy, R. H. Transdermal Drug Delivery: 30+ Years of War and Still Fighting! J. Control Release 2014, 190, 150–156. DOI: 10.1016/j.jconrel.2014.05.022.
  • So, J.; Ahn, J.; Lee, T.-H.; Park, K.-H.; Paik, M.-K.; Jeong, M.; Cho, M.-H.; Jeong, S.-H. Comparison of International Guidelines of Dermal Absorption Tests Used in Pesticides Exposure Assessment for Operators. Toxicol. Res. 2014, 30, 251–260. DOI: 10.5487/TR.2014.30.4.251.
  • Kluxen, F. M.; Felkers, E.; McEuen, S.; Fisher, P.; Strupp, C.; Lorez, C.; Domoradzki, J. Y.; Wiemann, C.,. A New Conceptional Model for Deriving Average Dermal Absorption Estimates from Studies with Multiple Tested Concentrations for Non-Dietary Risk Assessment of Pesticides. Arch. Toxicol. 2022, 96, 2429–2445.
  • Phatale, V.; Vaiphei, K. K.; Jha, S.; Patil, D.; Agrawal, M.; Alexander, A. Overcoming Skin Barriers through Advanced Transdermal Drug Delivery Approaches. J. Control Release 2022, 351, 361–380. DOI: 10.1016/j.jconrel.2022.09.025.
  • Suo, M.; Zhao, X.; Yu, G.; Zhang, W. Lidocaine Loaded Nanostructured Lipid Carriers for Prolonged Local Anesthesia: In Vitro and in Vivo Studies. J. Dispers. Sci. Technol. 2022, 43, 682–689. DOI: 10.1080/01932691.2020.1844739.
  • Lafarge, E.; Villette, S.; Cario-André, M.; Lecomte, S.; Faure, C. Transdermal Diffusion of Resveratrol by Multilamellar Liposomes: Effect of Encapsulation on Its Stability. J Drug Deliv Sci Technol 2022, 76, 103742. DOI: 10.1016/j.jddst.2022.103742.
  • Vitek, M.; Gosenca Matjaž, M.; Roškar, R.; Gašperlin, M.; Zvonar Pobirk, A. A. A Comparative Study of Lipid-Based Drug Delivery Systems with Different Microstructure for Combined Dermal Administration of Antioxidant Vitamins. J. Dispers. Sci. Technol. 2022, 1–14. DOI: 10.1080/01932691.2022.2037437.
  • Kalia, Y. N.; Guy, R. H. Modeling Transdermal Drug Release. Adv. Drug Deliv. Rev. 2001, 48, 159–172. DOI: 10.1016/S0169-409X(01)00113-2.
  • Delgado-Charro, M. B.; Guy, R. H. Effective Use of Transdermal Drug Delivery in Children. Adv. Drug Deliv. Rev. 2014, 73, 63–82. DOI: 10.1016/j.addr.2013.11.014.
  • Anjani, Q. K.; Sabri, A. B.; Henke, S.; Donnelly, R. F. Transdermal Drug Delivery. Spec. Pharm. Formul. 2022, 2, 94.
  • Flaten, G. E.; Palac, Z.; Engesland, A.; Filipović-Grčić, J.; Vanić, Ž.; Škalko-Basnet, N. In Vitro Skin Models as a Tool in Optimization of Drug Formulation. Eur. J. Pharm. Sci. 2015, 75, 10–24. DOI: 10.1016/j.ejps.2015.02.018.
  • Zsikó, S.; Csányi, E.; Kovács, A.; Budai-Szűcs, M.; Gácsi, A.; Berkó, S. Methods to Evaluate Skin Penetration in Vitro. Sci. Pharm. 2019, 87, 19. DOI: 10.3390/scipharm87030019.
  • Buist, H.; Craig, P. EFSA Guidance on Dermal Absorption. EFSA J. 2017, 15, e04873.
  • OECD. Test no. 428: Skin absorption: In vitro method. OECD Guidel Test Chem Sect 4 Heal Eff, 2004.
  • OECD. Guidance Document for the Conduct of Skin Absorption Studies. Environ./Jm/Mono 2004, 2, 1–31.
  • Kielhorn, J.; Mangelsdorf, I. Dermal Absorption. Vol. 235. Germany: World Health Organization, 2006.
  • ECETOC. Percutaneous absorption. Monograph No 20, 1993. ISSN: 0773-6347-20.
  • Dumont, C.; Prieto, P.; Asturiol, D.; Worth, A. Review of the Availability of in Vitro and in Silico Methods for Assessing Dermal Bioavailability. Appl. Vitr. Toxicol. 2015, 1, 147–164. DOI: 10.1089/aivt.2015.0003.
  • Yu, L.; Madsen, F. B.; Eriksen, S. H.; Andersen, A. J. C.; Skov, A. L. A Reliable Quantitative Method for Determining CBD Content and Release from Transdermal Patches in Franz Cells. Phytochem. Anal. 2022, 33, 1257–1265.
  • Zhang, Q. Evaluation of in vitro-in vivo Correlations in Topical and Transdermal Drug Delivery Systems by in vitro Permeation Testing and Pharmacokinetic Studies for Bioavailability/Bioequivalence and Heat Effect Assessment, 2022.
  • Pineau, A.; Guillard, O.; Fauconneau, B.; Favreau, F.; Marty, M.-H.; Gaudin, A.; Vincent, C. M.; Marrauld, A.; Marty, J.-P. In Vitro Study of Percutaneous Absorption of Aluminum from Antiperspirants through Human Skin in the FranzTM Diffusion Cell. J. Inorg. Biochem. 2012, 110, 21–26. DOI: 10.1016/j.jinorgbio.2012.02.013.
  • Levintova, Y.; Plakogiannis, F. M.; Bellantone, R. A. An Improved in Vitro Method for Measuring Skin Permeability That Controls Excess Hydration of Skin Using Modified Franz Diffusion Cells. Int. J. Pharm. 2011, 419, 96–106.
  • Panjwani, D.; Patel, S.; Mishra, D.; Patel, V.; Yadav, M.; Dharamsi, A.; Patel, A. Avidin-Biotin Functionalized Self-Assembled Protein Nanoparticles as EGFR Targeted Therapeutics for the Treatment of Lung Cancer: characterization and Cell Viability. J. Dispers. Sci. Technol. 2022, 1–14. DOI: 10.1080/01932691.2022.2099888.
  • Kaur, R.; Arora, S.; Goswami, M. Formulation Development and Evaluation of Transdermal Patch of Astaxanthin. Mater. Today Proc. 2022,
  • Espinoza, L. C.; Guaya, D.; Calpena, A. C.; Perotti, R. M.; Halbaut, L.; Sosa, L.; Brito-Llera, A.; Mallandrich, M. Comparative Study of Donepezil-Loaded Formulations for the Treatment of Alzheimer’s Disease by Nasal Administration. Gels 2022, 8, 715. DOI: 10.3390/gels8110715.
  • Zhang, W.; Zhou, Q.; Zhang, Q.; Zhu, H.; Zhang, D. Preparation and Performance of SiO2-Nanostructured Lipid Encapsulating Sunscreen. J. Dispers. Sci. Technol. 2022, 43, 1089–1098. DOI: 10.1080/01932691.2022.2043162.
  • Gaucher, S.; Elie, C.; Vérola, O.; Jarraya, M. Viability of Cryopreserved Human Skin Allografts: effects of Transport Media and Cryoprotectant. Cell Tissue Bank 2012, 13, 147–155. DOI: 10.1007/s10561-011-9239-3.
  • Kagan, R. J.; Robb, E. C.; Plessinger, R. T. Human Skin Banking. Clin. Lab. Med. 2005, 25, 587–605. DOI: 10.1016/j.cll.2005.06.008.
  • Aggarwal, S. J.; Baxter, C. R.; Diller, K. R. Cryopreservation of Skin: An Assessment of Current Clinical Applicability. J. Burn Care Rehabil. 1985, 6, 469–476.
  • Bätz, F. M.; Klipper, W.; Korting, H. C.; Henkler, F.; Landsiedel, R.; Luch, A.; von Fritschen, U.; Weindl, G.; Schäfer-Korting, M. Esterase Activity in Excised and Reconstructed Human Skin–Biotransformation of Prednicarbate and the Model Dye Fluorescein Diacetate. Eur. J. Pharm. Biopharm. 2013, 84, 374–385. DOI: 10.1016/j.ejpb.2012.11.008.
  • Bravo, D.; Rigley, T. H.; Gibran, N.; Strong, D. M.; Newman-Gage, H. Effect of Storage and Preservation Methods on Viability in Transplantable Human Skin Allografts. Burns 2000, 26, 367–378. DOI: 10.1016/S0305-4179(99)00169-2.
  • Barbero, A. M.; Frasch, H. F. Effect of Frozen Human Epidermis Storage Duration and Cryoprotectant on Barrier Function Using Two Model Compounds. Skin Pharmacol. Physiol. 2016, 29, 31–40. DOI: 10.1159/000441038.
  • Kerimoğlu, O.; Şahbaz, S. Animal Skin Models for Percutaneous Absorption Studies. J. Biopharm. Ther. Chal. 2018, 2, 1–2.
  • Todo, H. Transdermal Permeation of Drugs in Various Animal Species. Pharmaceutics 2017, 9, 33. DOI: 10.3390/pharmaceutics9030033.
  • Lai, J.; Maibach, H. I. Experimental Models in Predicting Topical Antifungal Efficacy: practical Aspects and Challenges. Skin Pharmacol. Physiol. 2009, 22, 231–239. DOI: 10.1159/000235827.
  • Abrams, B. B.; Lakshminarayanan, M. Ciclopirox Olamine Lotion 1%: Bioequivalence to Ciclopirox Olamine Cream 1% and Clinical Efficacy in Tinea Pedis. Clin. Ther. 1989, 11.
  • Bosman, I. J.; Avegaart, S. R.; Lawant, A. L.; Ensing, K.; De Zeeuw, R. A. Evaluation of a Novel Diffusion Cell for in Vitro Transdermal Permeation: effects of Injection Height, Volume and Temperature. J. Pharm. Biomed. Anal. 1998, 17, 493–499.
  • Friend, D. R. In Vitro Skin Permeation Techniques. J. Control Release 1992, 18, 235–248. DOI: 10.1016/0168-3659(92)90169-R.
  • Herkenne, C.; Alberti, I.; Naik, A.; Kalia, Y. N.; Mathy, F.-X.; Préat, V.; Guy, R. H. In Vivo Methods for the Assessment of Topical Drug Bioavailability. Pharm. Res. 2008, 25, 87–103. DOI: 10.1007/s11095-007-9429-7.
  • Taleuzzaman, M.; Sartaj, A.; Kumar, Gupta, D.; Gilani, S. J.; Mirza, M. A. Phytosomal Gel of Manjistha Extract (MJE) Formulated and Optimized with Central Composite Design of Quality by Design (QbD). J. Dispers. Sci. Technol. 2021, 44, 1–9.
  • Shrestha, N.; Banga, A. K. Development and Evaluation of Transdermal Delivery System of Tranylcypromine for the Treatment of Depression. Drug Deliv. Transl. Res. 2022, 13, 1–11.
  • Ajjarapu, K.; Maibach, H. I. Flow‐through versus Static in Vitro Percutaneous Penetration at 50 Years: Possible Relevance for Bioequivalence. Skin Res. Technol. 2022, 28, 540–543.
  • László, S.; Bátai, I. Z.; Berkó, S.; Csányi, E.; Dombi, Á.; Pozsgai, G.; Bölcskei, K.; Botz, L.; Wagner, Ö.; Pintér, E.; et al. Development of Capsaicin-Containing Analgesic Silicone-Based Transdermal Patches. Pharmaceuticals 2022, 15, 1279. DOI: 10.3390/ph15101279.
  • Yang, S.; Liu, W.; Liu, C.; Liu, W.; Tong, G.; Zheng, H.; Zhou, W.,. Characterization and Bioavailability of Vitamin C Nanoliposomes Prepared by Film Evaporation-Dynamic High Pressure Microfluidization. J. Dispers. Sci. Technol. 2012, 33, 1608–1614. DOI: 10.1080/01932691.2011.629511.
  • Kumar, B.; Pandey, M.; Aggarwal, R.; Sahoo, P. K. A Comprehensive Review on Invasomal Carriers Incorporating Natural Terpenes for Augmented Transdermal Delivery. Fut. J. Pharm. Sci. 2022, 8, 1–25. DOI: 10.1186/s43094-022-00440-6.
  • Bhatia, A.; Singh, B.; Wadhwa, S.; Raza, K.; Katare, O. P. Novel Phospholipid-Based Topical Formulations of Tamoxifen: evaluation for Antipsoriatic Activity Using Mouse-Tail Model. Pharm. Dev. Technol. 2014, 19, 160–163. DOI: 10.3109/10837450.2013.763260.
  • Raza, K.; Singh, B.; Lohan, S.; Sharma, G.; Negi, P.; Yachha, Y.; Katare, O. P. Nano-Lipoidal Carriers of Tretinoin with Enhanced Percutaneous Absorption, Photostability, Biocompatibility and anti-Psoriatic Activity. Int. J. Pharm. 2013, 456, 65–72. DOI: 10.1016/j.ijpharm.2013.08.019.
  • Raza, K.; Katare, O. P.; Setia, A.; Bhatia, A.; Singh, B. Improved Therapeutic Performance of Dithranol against Psoriasis Employing Systematically Optimized Nanoemulsomes. J. Microencapsul. 2013, 30, 225–236. DOI: 10.3109/02652048.2012.717115.
  • Katare, O.; Raza, K.; Singh, B.; Dogra, S. Novel Drug Delivery Systems in Topical Treatment of Psoriasis: rigors and Vigors. Indian J. Dermatol. Venereol. Leprol. 2010, 76, 612.
  • Okyar, A.; Nuriyev, M.; Yildiz, A.; Pala-Kara, Z.; Ozturk, N.; Kaptan, E. The Effect of Terpenes on Percutaneous Absorption of Tiaprofenic Acid Gel. Arch. Pharm. Res. 2010, 33, 1781–1788.
  • Franz, T. J, Percutaneous absorption On the Relevance of in Vitro Data. J. Invest. Dermatol. 1975, 64, 190–195.
  • Franz, T. J. The Finite Dose Technique as a Valid in Vitro Model for the Study of Percutaneous Absorption in Man. Curr. Probl. Dermatol. 1978, 7, 58–68.
  • Sun, R.; Xia, N.; Xia, Q. Non-Aqueous Nanoemulsions as a New Strategy for Topical Application of Astaxanthin. J. Dispers. Sci. Technol. 2019, 41, 1777–1788.
  • Gannu, R.; Rao, Y. M. Formulation Optimization and Evaluation of Microemulsion Based Transdermal Therapeutic System for Nitrendipine. J. Dispers. Sci. Technol. 2012, 33, 223–233.
  • de Almeida Borges, V. R.; Simon, A.; Sena, A. R. C.; Cabral, L. M.; de Sousa, V. P. Nanoemulsion Containing Dapsone for Topical Administration: A Study of in Vitro Release and Epidermal Permeation. Int. J. Nanomedicine 2013, 8, 535–544.
  • Amores, S.; Domenech, J.; Colom, H.; Calpena, A. C.; Clares, B.; Gimeno, Á.; Lauroba, J. An Improved Cryopreservation Method for Porcine Buccal Mucosa in Ex Vivo Drug Permeation Studies Using Franz Diffusion Cells. Eur. J. Pharm. Sci. 2014, 60, 49–54.
  • Chi, C.-T.; Lee, M.-H.; Weng, C.-F.; Leong, M. K. In Silico Prediction of PAMPA Effective Permeability Using a two-QSAR Approach. Int. J. Mol. Sci. 2019, 20, 3170.
  • Geinoz, S.; Guy, R. H.; Testa, B.; Carrupt, P.-A. Quantitative Structure-Permeation Relationships (QSPeRs) to Predict Skin Permeation: A Critical Evaluation. Pharm. Res. 2004, 21, 83–92.
  • Luo, L.; Patel, A.; Sinko, B.; Bell, M.; Wibawa, J.; Hadgraft, J.; Lane, M. E. A Comparative Study of the in Vitro Permeation of Ibuprofen in Mammalian Skin, the PAMPA Model and Silicone Membrane. Int. J. Pharm. 2016, 505, 14–19.
  • Vizserálek, G.; Vizserálek, G. Examination of Permeability of Drugs by PAMPA Method in Theoretical and Practical Aspects, 2016.
  • Ueda, C. T.; Shah, V. P.; Derdzinski, K.; Ewing, G.; Flynn, G.; Maibach, H.; Marques, M. R. C.; Rytting, H. J., Shaw, S.; et al. Topical and Transdermal Drug Products. Pharmacopeial. Forum 2009, 35, 750–764.
  • Sinkó, B.; Garrigues, T. M.; Balogh, G. T.; Nagy, Z. K.; Tsinman, O.; Avdeef, A.; Takács-Novák, K. Skin–PAMPA: A New Method for Fast Prediction of Skin Penetration. Eur. J. Pharm. Sci. 2012, 45, 698–707.
  • Serpe, L.; Muniz, B. V.; D.; Santos, C. P.; et al. Full-Thickness Intraoral Mucosa Barrier Models for in Vitro Drug-Permeation Studies Using Microneedles. J. Pharm. Sci. 2019, 108, 1756–1764.
  • Kansy, M.; Senner, F.; Gubernator, K. Physicochemical High Throughput Screening: parallel Artificial Membrane Permeation Assay in the Description of Passive Absorption Processes. J. Med. Chem. 1998, 41, 1007–1010. DOI: 10.1021/jm970530e.
  • Ottaviani, G.; Martel, S.; Carrupt, P.-A. Parallel Artificial Membrane Permeability Assay: A New Membrane for the Fast Prediction of Passive Human Skin Permeability. J. Med. Chem. 2006, 49, 3948–3954.
  • Selzer, D.; Abdel-Mottaleb, M. M. A.; Hahn, T.; Schaefer, U. F.; Neumann, D. Finite and Infinite Dosing: Difficulties in Measurements, Evaluations and Predictions. Adv. Drug Deliv. Rev. 2013, 65, 278–294.
  • Zhai, H.; Maibach, H. I. Effects of Skin Occlusion on Percutaneous Absorption: An Overview. Skin Pharmacol. Physiol. 2001, 14, 1–10.
  • Treffel, P.; Muret, P.; Muret-D’Aniello, P.; Coumes-Marquet, S.; Agache, P. Effect of Occlusion on in Vitro Percutaneous Absorption of Two Compounds with Different Physicochemical Properties. Skin Pharmacol. Physiol. 1992, 5, 108–113.
  • Zhai, H.; Maibach, H. I. Occlusion vs. skin Barrier Function. Skin Res. Technol. 2002, 8, 1–6.
  • Escobar-Chavez, J. J.; Merino-Sanjuán, V.; López-Cervantes, M.; Urban-Morlan, Z.; Piñón-Segundo, E.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. The Tape-Stripping Technique as a Method for Drug Quantification in Skin. J. Pharm. Pharm. Sci. 2008, 11, 104–130.
  • Braga Carneiro, S.; Kreutz, T.; Limberger, R. P.; da Veiga, V. F.; Koester, L. S. Development, Validation and Application of a Gas Chromatography Method for the Determination of Dillapiole from Piper Aduncum Essential Oil in Skin Permeation Samples. Biomed. Chromatogr. 2022, 37, e5544.
  • Dragicevic, N.; Maibach, H. I. Percutaneous Penetration Enhancers Drug Penetration into/through the Skin: Methodology and General Considerations. Germany: Springer, 2017.
  • Klang, V.; Schwarz, J. C.; Lenobel, B.; Nadj, M.; Auböck, J.; Wolzt, M.; Valenta, C. In Vitro vs. in Vivo Tape Stripping: Validation of the Porcine Ear Model and Penetration Assessment of Novel Sucrose Stearate Emulsions. Eur. J. Pharm. Biopharm. 2012, 80, 604–614.
  • Diembeck, W.; Eskes, C.; Heylings, J. R.; Langley, G.; Rogiers, V., van de Sandt, J. J.; Zuang, V. 3.5. Skin Absorption and Penetration. Altern. Lab Anim. 2005, 33, 105–107.
  • Pulsoni, I.; Lubda, M.; Aiello, M.; Fedi, A.; Marzagalli, M.; von Hagen, J.; Scaglione, S. Comparison between Franz Diffusion Cell and a Novel Micro-Physiological System for in Vitro Penetration Assay Using Different Skin Models. SLAS Technol. 2022, 27, 161–171.
  • Müller, M.; Brunner, M.; Schmid, R.; Putz, E. M.; Schmiedberger, A.; Wallner, I.; Eichler, H. G. Comparison of Three Different Experimental Methods for the Assessment of Peripheral Compartment Pharmacokinetics in Humans. Life Sci. 1998, 62, PL227–34.
  • Schrolnberger, C.; Brunner, M.; Mayer, B. X.; Eichler, H. G.; Müller, M. Application of the Minimal Trauma Tissue Biopsy to Transdermal Clinical Pharmacokinetic Studies. J. Control Release 2001, 75, 297–306.
  • Sun, Q.; Purvis, C. G.; Iqbal, S. N.; Emmerich, V. K.; Feldman, S. R.; Maibach, H. Percutaneous Egression: What Do we Know? Skin Pharmacol. Physiol. 2022, 35, 1–9.
  • Bao, L.; Park, J.; Bonfante, G.; Kim, B. Recent Advances in Porous Microneedles: Materials, Fabrication, and Transdermal Applications. Drug Deliv. Transl. Res. 2022, 12, 395–414.
  • Fan, Y.; Lu, Y.; Cheng, B.; Wei, Y.; Wei, Y.; Piao, J.; Li, F.; Zheng, H. Correlation between in Vivo Microdialysis Pharmacokinetics and Ex Vivo Permeation for Sinomenine Hydrochloride Transfersomes with Enhanced Skin Absorption. Int. J. Pharm. 2022, 621, 121789.
  • Saha, I.; Palak, A.; Rai, V. K. Relevance of NLC-Gel and Microneedling-Assisted Tacrolimus Ointment against Severe Psoriasiform: In Vitro Dermal Retention Kinetics, in Vivo Activity and Drug Distribution. J. Drug Deliv. Sci. Technol. 2022, 71, 103272.
  • Jakka, D.; Matadh, A. V.; Shivakumar, H. N.; Maibach, H.; Murthy, S. N. Polymer Coated Polymeric (PCP) Microneedles for Sampling of Drugs and Biomarkers from Tissues. Eur. J. Pharm. Sci. 2022, 175, 106203.
  • Orlowska-Majdak, M. Microdialysis of the Brain Structures: Application in Behavioral Research on Vasopressin and Oxytocin. Acta Neurobiol. Exp. (Wars) 2004, 64, 177–188.
  • Erdo, F. Microdialysis Techniques in Pharmacokinetic and Biomarker Studies. Past Present Futur. Dir. A Rev. Clin. Exp. Pharmacol. 2015, 5, 1459–2161.
  • Kirk, R. D.; Akanji, T.; Li, H.; Shen, J.; Allababidi, S.; Seeram, N. P.; Bertin, M. J.; Ma, H. Evaluations of Skin Permeability of Cannabidiol and Its Topical Formulations by Skin Membrane-Based Parallel Artificial Membrane Permeability Assay and Franz Cell Diffusion Assay. Med Cannabis Cannabinoids 2022, 5, 129–137.
  • Cetin, D.; Turker, T. G.; Yilmaz, N.; Karakoy, B. A. Comparative in Vitro Release Test Using Franz Diffusion Cell for Luliconazole% 1 Cream with Reference Drug Product. Microscopy 2022.
  • Silva, I. R.; Lima Fa, Reis, E. C. O.; Ferreira, L. A. M.; Goulart, G. A. C. Stepwise Protocols for Preparation and Use of Porcine Ear Skin for in Vitro Skin Permeation Studies Using Franz Diffusion Cells. Curr. Protoc. 2022, 2, e391.
  • Kang, K. H.; Kang, M. J.; Lee, J.; Choi, Y. W. Influence of Liposome Type and Skin Model on Skin Permeation and Accumulation Properties of Genistein. J. Dispers. Sci. Technol. 2010, 31, 1061–1066.
  • Haq, A.; Dorrani, M.; Goodyear, B.; Joshi, V.; Michniak-Kohn, B. Membrane Properties for Permeability Testing: Skin versus Synthetic Membranes. Int. J. Pharm. 2018, 539, 58–64.
  • Grillo, R.; Dias, F. V.; Querobino, S. M.; Alberto-Silva, C.; Fraceto, L. F.; de Paula, E.; de Araujo, D. R. Influence of Hybrid Polymeric Nanoparticle/Thermosensitive Hydrogels Systems on Formulation Tracking and in Vitro Artificial Membrane Permeation: A Promising System for Skin Drug-Delivery. Colloids Surf. B Biointerfaces 2019, 174, 56–62.
  • Simon, A.; Amaro, M. I.; Healy, A. M.; Cabral, L. M.; de Sousa, V. P. Comparative Evaluation of Rivastigmine Permeation from a Transdermal System in the Franz Cell Using Synthetic Membranes and Pig Ear Skin with in Vivo-in Vitro Correlation. Int. J. Pharm. 2016, 512, 234–241.
  • Haque, T.; Lane, M. E.; Sil, B. C.; Crowther, J. M.; Moore, D. J. In Vitro Permeation and Disposition of Niacinamide in Silicone and Porcine Skin of Skin Barrier-Mimetic Formulations. Int. J. Pharm. 2017, 520, 158–162. DOI: 10.1016/j.ijpharm.2017.01.054.
  • Costa Duarte, F. Í.; de Mendonça Costa, S.; Vieira, A. B.; Filho, J. F.; Freire, J. V. A.; Converti, A.; Ferrari, M.; Gomes, A. P.; Ostrosky, E. A.; Lima, Á. A. In Vitro Release Studies of Ferulic Acid in Semi-Solid Formulations with Optimized Synthetic Membrane. J. Drug Deliv. Sci. Technol. 2021, 61, 102106.
  • Iadaresta, F.; Manniello, M. D.; Östman, C.; Crescenzi, C.; Holmbäck, J.; Russo, P. Chemicals from Textiles to Skin: An in Vitro Permeation Study of Benzothiazole. Environ. Sci. Pollut. Res. 2018, 25, 24629–24638.
  • Chakraborti, C. K.; Sahoo, S.; Behera, P. K. Effect of Different Polymers on in Vitro and Ex Vivo Permeability of Ofloxacin from Its Mucoadhesive Suspensions. Saudi Pharm. J. 2015, 23, 195–201.
  • Chandak, S. M.; Trivedi, S. S.; Wadher, K. J.; Umekar, M. J. Design, Development, and Ex vivo Characterization of Boswellia serrata Loaded Emulgel, 2020.
  • Pandey, S. S.; Shah, K. M.; Maulvi, F. A.; Desai, D. T.; Gupta, A.; Joshi, S.; Shah, D. Topical Delivery of Cyclosporine Loaded Tailored Niosomal Nanocarriers for Improved Skin Penetration and Deposition in Psoriasis: Optimization, Ex Vivo and Animal Studies. J. Drug Deliv. Sci. Technol. 2021, 63, 102441.
  • Malli, S.; Bories, C.; Pradines, B.; Loiseau, P. M.; Ponchel, G.; Bouchemal, K. In Situ Forming Pluronic® F127/Chitosan Hydrogel Limits Metronidazole Transmucosal Absorption. Eur. J. Pharm. Biopharm. 2017, 112, 143–147.
  • Sauce, R.; Pinto Cas de, O.; Velasco, M. V. R.; Rosado, C.; Baby, A. R. Ex Vivo Penetration Analysis and anti-Inflammatory Efficacy of the Association of Ferulic Acid and UV Filters. Eur. J. Pharm. Sci. 2021, 156, 105578.
  • Katakam, L. N. R.; Katari, N. K. Development of in-Vitro Release Testing Method for Permethrin Cream Formulation Using Franz Vertical Diffusion Cell Apparatus by HPLC. Talanta Open 2021, 4, 100056.
  • Bao, Q.; Newman, B.; Wang, Y.; Choi, S.; Burgess, D. J. In Vitro and Ex Vivo Correlation of Drug Release from Ophthalmic Ointments. J. Control Release 2018, 276, 93–101.
  • Waqas, M. K.; Sadia, H.; Khan, M. I.; Omer, M. O.; Siddique, M. I.; Qamar, S. Development and Characterization of Niosomal Gel of Fusidic Acid: In-Vitro and Ex-Vivo Approaches. Des. Monomers Polym. 2022, 25, 165–174.
  • Špaglová, M.; Čuchorová, M.; Šimunková, V.; Matúšová, D.; Čierna, M.; Starýchová, L.; Bauerová, K. Possibilities of the Microemulsion Use as Indomethacin Solubilizer and Its Effect on in Vitro and Ex Vivo Drug Permeation from Dermal Gels in Comparison with Transcutol®. Drug Dev. Ind. Pharm. 2020, 46, 1468–1476.
  • Bondre, R. M.; Kanojiya, P. S.; Wadetwar, R. N.; Kangali, P. S. Sustained Vaginal Delivery of in Situ Gel Containing Voriconazole Nanostructured Lipid Carrier: formulation, in Vitro and Ex Vivo Evaluation. J. Dispers. Sci. Technol. 2021, 1–13.
  • Klein, A. L.; Lubda, M.; Skov, P. S.; Matúšová, D.; Čierna, M.; Starýchová, L.; Bauerová, K. Investigation of Transfollicular Caffeine Penetration Using Microdialysis on Ex Vivo Porcine Ear Skin. Eur. J. Pharm. Biopharm. 2020, 157, 1–8.
  • Salama, A.; Badran, M.; Elmowafy, M.; Soliman, G. M. Spironolactone-Loaded Leciplexes as Potential Topical Delivery Systems for Female Acne: In Vitro Appraisal and Ex Vivo Skin Permeability Studies. Pharmaceutics 2020, 12, 1–17.
  • Ahmad, N.; Ahmad, R.; Mohammed Buheazaha, T.; Salman AlHomoud, H.; Al-Nasif.; H. A.; Sarafroz. M. A Comparative Ex Vivo Permeation Evaluation of a Novel 5-Fluorocuracil Nanoemulsion-Gel by Topically Applied in the Different Excised Rat, Goat, and Cow Skin. Saudi J. Biol. Sci. 2020, 27, 1024–1040.
  • Kaur, N.; Sharma, K.; Bedi, N. Topical Nanostructured Lipid Carrier Based Hydrogel of Mometasone Furoate for the Treatment of Psoriasis. Pharm. Nanotechnol. 2018, 6, 133–143.
  • Parhi, R.; Suresh, P. Transdermal Delivery of Diltiazem HCl from Matrix Film: Effect of Penetration Enhancers and Study of Antihypertensive Activity in Rabbit Model. J. Adv. Res. 2016, 7, 539–550.
  • Altamimi, M. A.; Hussain, A.; Alshehri, S.; Imam, S. S. Experimental Design Based Optimization and Ex Vivo Permeation of Desmopressin Acetate Loaded Elastic Liposomes Using Rat Skin. Pharmaceutics 2021, 13, 1047.
  • Sun, Z. Optimization of Clobetasol Propionate Loaded Niosomal Gel for the Treatment of Psoriasis: Ex Vivo and Efficacy Study. J. Dispers. Sci. Technol. 2022, 1–11.
  • Bonferoni, M. C.; Rossi, S.; Ferrari, F.; Caramella, C. A Modified Franz Diffusion Cell for Simultaneous Assessment of Drug Release and Washability of Mucoadhesive Gels. Pharm. Dev. Technol. 1999, 4, 45–53.
  • Ng, S.-F.; Rouse, J.; Sanderson, D.; Eccleston, G. A Comparative Study of Transmembrane Diffusion and Permeation of Ibuprofen across Synthetic Membranes Using Franz Diffusion Cells. Pharmaceutics 2010, 2, 209–223.
  • Salamanca, C. H.; Barrera-Ocampo, A.; Lasso, J. C.; Camacho, N.; Yarce, C. J. Franz Diffusion Cell Approach for Pre-Formulation Characterisation of Ketoprofen Semi-Solid Dosage Forms. Pharmaceutics 2018, 10, 148.
  • Kesharwani, R.; Sachan, A.; Singh, S.; Patel, D. Formulation and Evaluation of Solid Lipid Nanoparticle (SLN) Based Topical Gel of Etoricoxib. J. Appl. Pharm. Sci. 2016, 6, 124–131.
  • Abd, E.; Gomes, J.; Sales, C. C.; et al. Deformable Liposomes as Enhancer of Caffeine Penetration through Human Skin in a Franz Diffusion Cell Test. Int. J. Cosmet. Sci. 2021, 43, 1–10.
  • Bosman, I. J.; Lawant, A. L.; Avegaart, S. R.; Ensing, K.; D.; Zeeuw, R. A. Novel Diffusion Cell for in Vitro Transdermal Permeation, Compatible with Automated Dynamic Sampling. J. Pharm. Biomed. Anal. 1996, 14, 1015–1023.
  • Gieszinger, P.; Kiss, T.; Szabó-Révész, P.; Ambrus, R. The Development of an in Vitro Horizontal Diffusion Cell to Monitor Nasal Powder Penetration Inline. Pharmaceutics 2021, 13, 809.
  • Kumar, S. R.; Mohan, V.; Srilekha, K.; Ryaz, S.; Koteshwara, K. B.; Tippavajhala, V. K.; Kumar, L. Diffusion Studies of Diclofenac Sodium Topical Gel Using Different Synthetic Membranes. Res. J. Pharm. Technol. 2020, 13, 3098–3102.
  • Priani, S.; Yussepina Wulansari, D.; Darusman, F. In-Vitro Diffusion Study of Caffeine from Microemulsion Gel System Containing Grape Seed Oil. Pharmaciana 2021, 11, 81–90.
  • de Melo Fonseca, A.; Araújo C da, C. B.; da Silva, J. H.; Honório, T.; Nasciutti, L.; Cabral, L.; do Carmo, F. A.; de Sousa, V. D. Development of Transdermal Based Hydrogel Formulations of Vinorelbine with an Evaluation of Their in Vitro Profiles and Activity against Melanoma Cells and in Silico Prediction of Drug Absorption. J. Drug Deliv. Sci. Technol. 2021, 63, 102449.
  • Acar, Y.; Akyol, E. Preparation of Transdermal Films for Controlled Release of Donepezil HCL. Online J. Sci. Technol. 2021, 11, 31.
  • Ullah, W.; Nawaz, A.; Akhlaq, M.; Shah, K. U.; Latif, M. S.; Alfatama, M. Transdermal Delivery of Gatifloxacin Carboxymethyl Cellulose-Based Patches: Preparation and Characterization. J. Drug Deliv. Sci. Technol. 2021, 66, 102783.
  • Hassam, H.; Shoaib, M. H.; Yousuf, R. I.; Ali, F. R.; Siddiqui, F.; Irshad, A. Formulation Development and Evaluation of Nimesulide Transdermal Gel Patch System. Polym. Bull. 2021, 79, 1–18.
  • Otarola, J. J.; Solis, A. K. C.; Farias, M. E.; Garrido, M.; Correa, N. M.; Molina, P. G. Piroxicam-Loaded Nanostructured Lipid Carriers Gel: Design and Characterization by Square Wave Voltammetry. Colloids Surfaces A Physicochem. Eng. Asp 2020, 606, 125396.
  • Kapoor, K.; Pandit, V.; Nagaich, U. Development and Characterization of Sustained Release Methotrexate Loaded Cubosomes for Topical Delivery in Rheumatoid Arthritis. Int. J. Appl. Pharm. 2020, 12, 33–39.
  • Salabat, A.; Parsi, E. Ex Vivo Evaluation of Celecoxib Release from Ionic Liquid-Based Microemulsions and Microemulgels for Topical Applications. J. Iran Chem. Soc. 2021, 18, 1355–1361.
  • Shaikh, A. Formulation and In-vitro Evaluation of NSAID’S Gel. Int J Curr Pharm Res, 2012, 4, 56–58.
  • Raikwar, R.; Sharma, R.; Rathi, J. C. Formulation Development and Characterization of Transfersomes for Fungal Treatment, 2021.
  • Subongkot, T. Combined Effect of Sonophoresis and a Microemulsion on the Dermal Delivery of Celecoxib. Drug Deliv. 2020, 27, 1087–1093.
  • Satnami, K.; Jain, D. P.; Jain, N. P.; Goswami, R. B. Formulation and Evaluation of Solid Lipid Nanoparticles of Naproxen, 2021.
  • Vora, D.; Somayaji, M. R.; German, C.; Banga, A. K. Topical and Transdermal Iontophoretic Delivery of Methotrexate in Healthy and Psoriatic Human Skin, 2021.
  • Shrestha, S.; Budhathoki, U. Formulation, Ex-Vivo and in-Vitro Characterization of Liposomal Drug Delivery System Offexofenadine:(TJPS-2020-0262. R2). Thai J. Pharm. Sci. 2021, 46, 56–60.
  • Thakre, D.; Saxena, S.; Jain, S. Development and Characterization of Transfersomes of Itraconazole for Effective Treatment of Fungal Disease. Ajper, 2021, 10, 26–34.
  • Jadhao Umesh, T.; Rathod Sayali, P.; Dhembre Gunesh, N.; Sable Shital, D. Formulation and Critical Evaluation of Piroxicam Gel, 2021, 10, 89–94.
  • Kelso, C. M.; Watanabe, H.; Wazen, J. M.; Bucher, T. C.; Utikal, J. S.; Schadendorf, D.; Brinker, T. J. Microperforations Significantly Enhance Diffusion across Round Window Membrane. Otol. Neurotol. 2015, 36, 694–700.
  • Klein, R. R.; Heckart, J. L.; Thakker, K. D. In Vitro Release Testing Methodology and Variability with the Vertical Diffusion Cell (VDC). Dissolution Technol. 2018, 25, 52–61.
  • Haltner-Ukomadu, E.; Sacha, M.; Richter, A.; Hussein, K. Hydrogel Increases Diclofenac Skin Permeation and Absorption. Biopharm. drug dispos. 2019, 40, 217–224.
  • Zhang, H.; Zhu, X.; Shen, J.; Xu, H.; Ma, M.; Gu, W.; Jiang, Q.; Chen, J.; Duan, J. Characterization of a Liposome-Based Artificial Skin Membrane for in Vitro Permeation Studies Using Franz Diffusion Cell Device. J. Liposome Res. 2017, 27, 302–311.
  • Zupančič, Š.; Potrč, T.; Baumgartner, S.; Kocbek, P.; Kristl, J. Formulation and Evaluation of Chitosan/Polyethylene Oxide Nanofibers Loaded with Metronidazole for Local Infections. Eur. J. Pharm. Sci. 2016, 95, 152–160.
  • Yadav, A. K.; Garg, V.; Gulati, M.; Bansal, P.; Bansal, K.; Kaur, P.; Singh, S.; Mittal, A.; Narang, R.; Kumar, B.; et al. Design and Performance Verification of Newly Developed Disposable Static Diffusion Cell for Drug Diffusion/Permeability Studies. Asian J. Pharm. Clin. Res. 2018, 11, 1–7.
  • Balázs, B.; Vizserálek, G.; Berkó, S.; Gácsi, A.; Kovács, A.; Budai-Szűcs, M.; Pajor, L.; Bajory, Z.; Csányi, E. Investigation of the Efficacy of Transdermal Penetration Enhancers through the Use of Human Skin and a Skin Mimic Artificial Membrane. J. Pharm. Sci. 2016, 105, 1134–1140.
  • Berkó, S.; Zsikó, S.; Deák, G.; Gácsi, A.; Kovács, A.; Budai-Szűcs, M.; Pajor, L.; Bajory, Z.; Csányi, E. Papaverine Hydrochloride Containing Nanostructured Lyotropic Liquid Crystal Formulation as a Potential Drug Delivery System for the Treatment of Erectile Dysfunction. Drug Des. Dev. Ther. 2018, 12, 2923–2931.
  • Kim, Y.; Beck-Broichsitter, M.; Banga, A. K. Design and Evaluation of a Poly(Lactide-co-Glycolide)-Based in Situ Film-Forming System for Topical Delivery of Trolamine Salicylate. Pharmaceutics 2019, 11, 409.
  • Alves, A. C.; Ramos, I. I.; Nunes, C.; Magalhães, L. M.; Sklenářová, H.; Segundo, M. A.; Lima, J. L.; Reis, S. et al. On-Line Automated Evaluation of Lipid Nanoparticles Transdermal Permeation Using Franz Diffusion Cell and Low-Pressure Chromatography. Talanta 2016, 146, 369–374.
  • David, S. R. N.; Rajabalaya, R.; Zhia, E. S. Development and in Vitro Evaluation of Self-Adhesive Matrix-Type Transdermal Delivery System of Ondansetron Hydrochloride. Trop. J. Pharm. Res. 2015, 14, 211–218.
  • Mohanty, B.; Majumdar, D. K.; Mishra, S. K.; Panda, A. K.; Patnaik, S. Development and Characterization of Itraconazole-Loaded Solid Lipid Nanoparticles for Ocular Delivery. Pharm. Dev. Technol. 2015, 20, 458–464.
  • Singh, A.; Bali, A. Formulation and Characterization of Transdermal Patches for Controlled Delivery of Duloxetine Hydrochloride. J. Anal. Sci. Technol. 2016, 7, 25.
  • Fahmy, U. A. Nanoethosomal Transdermal Delivery of Vardenafil for Treatment of Erectile Dysfunction: Optimization, Characterization, and in Vivo Evaluation. Drug Des. Dev. Ther. 2015, 9, 6129–6137.
  • Zeb, A.; Qureshi, O. S.; Kim, H. S.; Cha, J. H.; Kim, H. S.; Kim, J. K. Improved Skin Permeation of Methotrexate via Nanosized Ultradeformable Liposomes. Int. J. Nanomedicine. 2016, 11, 3813–3824.
  • EMA The European Agency for the Evaluation of Medicinal Products. Available from: https://www.ema.europa.eu/documents/scientific-guideline/note-guidance-quality-modified-release-products-oral-dosage-forms-b-transdermal-dosage-forms-section_en.pdf.
  • Neupane, R.; Boddu, S. H. S.; Renukuntla, J.; Babu, R. J.; Tiwari, A. K. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020, 12, 152.
  • Rockville, R. The United States Pharmacopeia, General Chapter 3. In Topical and Transdermal Drug Products: Product Quality Tests, 44nd Ed, United State, 2021.
  • Engelhardt, R. L.; da Silva, T. M.; do Carmo, F. A.; Rocha, H. V. A. In Vitro Transdermal Drug Permeation Tests: A Regulatory Scenario Evaluation. Rev. Colomb. Ciencias Químico-Farmacéut. 2022, 51, 41–67.
  • Bartosova, L.; Bajgar, J. Transdermal Drug Delivery in Vitro Using Diffusion Cells. Curr. Med. Chem. 2012, 19, 4671–4677.
  • Gray, V. A. Regulatory Considerations. United State: Wiley Online Library, 2019.
  • Council of Europe. European Directorate for the Quality of Medicines and Health Care. In European Pharmacopoeia, Chapter 2.9.4: Dissolution Tests for Transdermal Patches, 10th Ed. United State: Strasbourg, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.