120
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Temperature dependent micellization behavior of as synthesized anionic SAILs in aqueous nonionic polymer solutions: conductivity, UV-visible probe and antimicrobial studies

ORCID Icon &
Pages 957-968 | Received 18 Nov 2022, Accepted 04 Mar 2023, Published online: 17 Mar 2023

References

  • Xu, C.; Cheng, Z. Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development. Processes 2021, 9, 337. DOI: 10.3390/pr9020337.
  • Kohno, Y.; Ohno, H. Ionic Liquid/Water Mixtures: From Hostility to Conciliation. Chem. Commun (Camb). 2012, 48, 7119–7130. DOI: 10.1039/c2cc31638b.
  • Silva, W.; Zanatta, M.; Ferreira, A. S.; Corvo, M. C.; Cabrita, E. J. Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis. IJMS 2020, 21, 7745. DOI: 10.3390/ijms21207745.
  • Mallakpour, S.; Rafiee, Z. Ionic Liquids as Environmentally Friendly Solvents in Macromolecules Chemistry and Technology, Part I. J. Polym. Environ. 2011, 19, 447–484. DOI: 10.1007/s10924-011-0287-3.
  • Alammar, T.; Birkner, A.; Mudring, A. Ultrasound-Assisted Synthesis of CuO Nanorods in a Neat Room-Temperature Ionic Liquid. Eur. J. Inorg. Chem. 2009, 19, 2765–2768.
  • Xia, Y.; Sasaki, S.; Murakami, T.; Nakano, M.; Shi, L.; Wang, H. Ionic Liquid Lubrication of Electrodeposited Nickel–Si3N4 Composite Coatings. Wear 2007, 262, 765–771. DOI: 10.1016/j.wear.2006.06.015.
  • Wang, Q.; Baker, G. A.; Baker, S. N.; Colon, L. A. Surface Confined Ionic Liquid as a Stationary Phase for HPLC. Analyst 2006, 131, 1000–1005. DOI: 10.1039/b607337a.
  • Arce, A.; Earle, M. J.; Rodríguez, H.; Seddon, K. R.; Soto, A. Bis{(Trifluoromethyl)Sulfonyl}Amide Ionic Liquids as Solvents for the Extraction of Aromatic Hydrocarbons from Their Mixtures with Alkanes: Effect of the Nature of the Cation. Green Chem. 2009, 11, 365–372. DOI: 10.1039/B814189D.
  • Balducci, A.; Bardi, U.; Caporali, S.; Mastragostino, M.; Soavi, F. Ionic Liquids for Hybrid Supercapacitors. Electrochem. Commun. 2004, 6, 566–570. DOI: 10.1016/j.elecom.2004.04.005.
  • Devarajan, T.; Higashiya, S.; Dangler, C.; Rane-Fondacaro, M.; Snyder, J.; Haldar, P. Novel Ionic Liquid Electrolyte for Electrochemical Double Layer Capacitors. Electrochem. Commun. 2009, 11, 680–683. DOI: 10.1016/j.elecom.2009.01.013.
  • Nakamoto, H.; Watanabe, M. Brønsted Acid–Base Ionic Liquids for Fuel Cell Electrolytes. Chem. Commun. 2007, 24, 2539–2541.
  • Gamstedt, H.; Hagfeldt, A.; Kloo, L. Photoelectrochemical Studies of Ionic Liquid-Containing Solar Cells Sensitized with Different Polypyridyl–Ruthenium Complexes. Polyhedron 2009, 28, 757–762. DOI: 10.1016/j.poly.2008.12.033.
  • Chou, H. C.; Chen, J. C.; Tai, C.; Sun, I.; Zen, J. M. A Nonenzymatic Glucose Sensor Using Nanoporous Platinum Electrodes Prepared by Electrochemical Alloying/Dealloying in a Water-Insensitive Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid. Electroanalysis 2008, 20, 771–775. DOI: 10.1002/elan.200704102.
  • Gehlot, P. S.; Kulshrestha, A.; Bharmoria, P.; Damarla, K.; Chokshi, K.; Kumar, A. Surface-Active Ionic Liquid Cholinium Dodecylbenzenesulfonate: Self-Assembling Behavior and Interaction with Cellulase. ACS Omega 2017, 2, 7451–7460. DOI: 10.1021/acsomega.7b01291.
  • Klein, R.; Kellermeier, M.; Touraud, D.; Muller, E.; Kunz, W. Choline Alkylsulfates—New Promising Green Surfactants. J. Colloid Interface Sci. 2013, 392, 274–280. DOI: 10.1016/j.jcis.2012.10.003.
  • Brown, P.; Butts, C. P.; Eastoe, J.; Fermin, D.; Grillo, I.; Lee, H.; Parker, D.; Plana, D.; Richardson, R. M. Anionic Surfactant Ionic Liquids with 1-Butyl-3-Methyl-Imidazolium Cations: Characterization and Application. Langmuir 2012, 28, 2502–−2509. DOI: 10.1021/la204557t.
  • Liu, T.; Zhu, L.; Wang, J.; Wang, J.; Zhang, J.; Sun, X.; Zhang, C. Biochemical Toxicity and DNA Damage of Imidazolium-Based Ionic Liquid with Different Anions in Soil on Vicia Faba Seedlings. Sci. Rep. 2015, 5, 18444. DOI: 10.1038/srep18444.
  • Wang, H.; Zhang, L.; Wang, J.; Li, Z.; Zhang, S. The First Evidence for Unilamellar Vesicle Formation of Ionic Liquids in Aqueous Solutions. Chem. Commun. 2013, 49, 5222. DOI: 10.1039/c3cc41908h.
  • Yin, T.; Wu, J.; Wang, S.; Shen, W. Structure Rearrangement in the Aqueous Solution of Surface Active Ionic Liquid 1-Butyl-3- Methylimidazolium Bis(2-Ethylhexyl) Sulfosuccinate. Soft Matter 2015, 11, 4717–4722. DOI: 10.1039/c5sm00629e.
  • Pal, A.; Yadav, S. Investigation of Physicochemical Properties between Poly(Ethylene Glycol)/Poly(Vinylpyrrolidone) and 1-Butyl-3-Methylimidazolium Dodecyl Sulfate in Aqueous Solution. Chem. Phys. Lett. 2019, 714, 45–52. DOI: 10.1016/j.cplett.2018.10.055.
  • Sun, Y.; Xu, X.; Qin, M.; Pang, N.; Wang, G.; Zhuang, L. Dodecyl Sulfate-Based Anionic Surface-Active Ionic Liquids: Synthesis, Surface Properties, and Interaction with Gelatin. Colloid Polym. Sci. 2019, 297, 571–586. DOI: 10.1007/s00396-019-04473-x.
  • Chauhan, S.; Kumar, A.; Kaur, M.; Chauhan, M. S. Physico-Chemical and Spectroscopic Approach to Analyse the Behaviour of Surface-Active Ionic Liquid and Conventional Surfactant in Aqueous Glycine. J. Surfact Deterg. 2017, 20, 1129–1139. DOI: 10.1007/s11743-017-1993-1.
  • Sifaoui, H.; Lugowska, K.; Domańska, U.; Modaressi, A.; Rogalski, M. Ammonium Ionic Liquid as Modulator of the Critical Micelle Concentration of Ammonium Surfactant at Aqueous Solution: Conductimetric and Dynamic Light Scattering (DLS) Studies. J. Colloid Interface Sci. 2007, 314, 643–650.
  • Pernak, J.; Syguda, A.; Mirska, I.; Pernak, A.; Nawrot, J.; Pr??dzyńska, A.; Griffin, S.; Rogers, R. Choline-Derivative-Based Ionic Liquids. Chem. Eur. J. 2007, 13, 6817–6827. DOI: 10.1002/chem.200700285.
  • Singh, S.; Yadav, S. K.; Parikh, K.; Desai, A.; Dixit, S.; Kumar, S. Mixed Micellization/Clouding Assisted Solubilization of Polycyclic Aromatic Hydrocarbon: Potential in Environmental Remediation. J. Mol. Liq. 2018, 272, 413–422. DOI: 10.1016/j.molliq.2018.09.022.
  • Vieira, M. O.; Monteiro, W. F.; Neto, B. S.; Ligabue, R.; Chaban, V. V.; Einloft, S. Surface Active Ionic Liquids as Catalyst for CO2 Conversion to Propylene Carbonate. Catal. Lett. 2018, 148, 108–118. DOI: 10.1007/s10562-017-2212-4.
  • Tam, K. C.; Wyn-Jones, E. Insights on Polymer Surfactant Complex Structures during the Binding of Surfactants to Polymers as Measured by Equilibrium and Structural Techniques. Chem. Soc. Rev. 2006, 35, 693–709.
  • Hu, C.; Du, Z.; Tai, X.; Liu, X. Study on the Interactions between SDBS/SOE-60 Mixed Surfactant and PVP in Solution. J. Appl. Polym. Sci. 2018, 135, 46717. DOI: 10.1002/app.46717.
  • Petkova, R.; Tcholakova, S.; Denkov, N. D. Foaming and Foam Stability for Mixed Polymer − Surfactant Solutions: Effects of Surfactant Type and Polymer Charge. Langmuir 2012, 28, 4996–−5009. DOI: 10.1021/la3003096.
  • Banipal, T. S.; Kaur, H.; Banipal, P. K.; Sood, A. K. Effect of Head Groups, Temperature, and Polymer Concentration on Surfactant—Polymer Interactions. J. Surfact Deterg. 2014, 17, 1181–1191. DOI: 10.1007/s11743-014-1633-y.
  • Niranjan, P. S.; Upadhyay, S. K. Interaction of Polyacrylamide with Conventional Anionic and Gemini Anionic Surfactants. J. Dispers. Sci. Technol. 2010, 32, 109–113. DOI: 10.1080/01932690903542982.
  • Chauhan, S.; Singh, R.; Sharma, K.; Kumar, K. Interaction Study of Anionic Surfactant with Aqueous Non-Ionic Polymers from Conductivity, Density and Speed of Sound Measurements. J. Surfact. Deterg. 2015, 18, 225–232. DOI: 10.1007/s11743-014-1613-2.
  • Voisin, D.; Vincent, B. Flocculation in Mixtures of Cationic Polyelectrolytes and Anionic Surfactants. Adv. Colloid Interface Sci. 2003, 106, 1–22. DOI: 10.1016/s0001-8686(03)00103-9.
  • Shen, L.; Nguyen, X.; Hankins, N. P. Removal of Heavy Metal Ions from Dilute Aqueous Solutions by Polymer–Surfactant Aggregates: A Novel Effluent Treatment Process. Sep. Purif. Technol. 2015, 152, 101–107. DOI: 10.1016/j.seppur.2015.07.065.
  • Jiao, J.; Zhang, Y.; Fang, L.; Yu, L.; Sun, L.; Wang, R.; Cheng, N. Electrolyte Effect on the Aggregation Behavior of 1-Butyl-3-Methylimidazolium Dodecylsulfate in Aqueous Solution. J. Colloid Interface Sci. 2013, 402, 139–145.
  • Chauhan, S.; Pathania, L. Impact of Cationic Surfactants on Cefepime Properties in Aqueous Medium: Micellization and Characterization of Microenvironment. J. Mol. Liq. 2018, 272, 953–962. DOI: 10.1016/j.molliq.2018.10.071.
  • Chauhan, S.; Singh, K.; Sundaresan, C. N. Physico-Chemical Characterization of Drug–Bio-Surfactant Micellar System: A Road for Developing Better Pharmaceutical Formulations. J. Mol. Liq. 2018, 266, 692–702. DOI: 10.1016/j.molliq.2018.07.008.
  • Chauhan, S.; Kaur, M.; Singh, K.; Chauhan, M. S.; Kohli, P. Micellar and Antimicrobial Activities of Ionic Surfactants in Aqueous Solutions of Synthesized Tetraalkylammonium Based Ionic Liquids. Colloids Surf. A Physicochem. Eng. Asp. 2017, 535, 232–241. DOI: 10.1016/j.colsurfa.2017.09.042.
  • Khan, A.; Yasa, S. R.; Gusain, R.; Khatri, O. P. Oil-Miscible, Halogen-Free, and Surface-Active Lauryl Sulphatederived Ionic Liquids for Enhancement of Tribological Properties. J. Mol. Liq. 2020, 318, 114005. DOI: 10.1016/j.molliq.2020.114005.
  • Gao, X.; Chorover, J. Adsorption of Sodium Dodecyl Sulfate (SDS) at ZnSe and a-Fe2O3 Surfaces: Combining Infrared Spectroscopy and Batch Uptake Studies. J. Colloid Interface Sci. 2010, 348, 167–176. DOI: 10.1016/j.jcis.2010.04.011.
  • Pal, A.; Yadav, S. Effect of a Copolymer Poly(4-Styrenesufonic Acid-co-Maleic Acid) Sodium Salt on Aggregation Behavior of Surface Active Ionic Liquid 1- Tetradecyl-3-Methylimidazolium Bromide and Structurally Similar Conventional Surfactant Tetradecyltrimethylammonium Bromide in Aqueous Media. J. Dispers. Sci. Technol. 2018, 40, 440–452.
  • Behera, S. K.; Mohapatra, M. Exploring the Interaction of Dietary Fiber Hydroxypropyl Methylcellulose and Biosurfactant Sodium Deoxycholate Colloid Polym. Science 2022, 300, 1301–1310.
  • Goddard, E. D. Polymer/Surfactant Interaction: Interfacial Aspects. J. Colloid Interface Sci. 2002, 256, 228–235. DOI: 10.1006/jcis.2001.8066.
  • Chauhan, S.; Kumari, S.; Singh, K. Conductometric and Fluorescence Probe Analysis on Molecular Interactions between Cationic Surfactants in Aqueous Medium of Glycyl Dipeptide: Concentration and Temperature Effect. J. Chem. Thermodyn. 2017, 105, 337–344. DOI: 10.1016/j.jct.2016.10.045.
  • Chauhan, S.; Kaur, M.; Kumar, K.; Chauhan, M. S. Study of the Effect of Electrolyte and Temperature on the Critical Micelle Concentration of Dodecyltrimethylammonium Bromide in Aqueous Medium. J. Chem. Thermodyn. 2014, 78, 175–181. DOI: 10.1016/j.jct.2014.07.003.
  • Benrraou, M.; Bales, B. L.; Zana, R. Effect of the Nature of the Counterion on the Properties of Anionic Surfactants. 1. Cmc, Ionization Degree at the Cmc and Aggregation Number of Micelles of Sodium, Cesium, Tetramethylammonium, Tetraethylammonium, Tetrapropylammonium, and Tetrabutylammonium Dodecyl Sulfates. J. Phys. Chem. B 2003, 107, 13432–13440.
  • Jiao, J.; Dong, B.; Zhang, H.; Zhao, Y.; Wang, X.; Wang, R.; Yu, L. Aggregation Behaviors of Dodecyl Sulfate-Based Anionic Surface Active Ionic Liquids in Water. J. Phys. Chem. B 2012, 116, 958–965. DOI: 10.1021/jp209276c.
  • Chen, L.-J.; Lin, S.-Y.; Huang, C.-C. Effect of Hydrophobic Chain Length of Surfactants on Enthalpy-Entropy Compensation of Micellization. J. Phys. Chem. B 1998, 102, 4350–4356. DOI: 10.1021/jp9804345.
  • Stopková, L.; Gališinová, J.; Šuchtová, Z.; Čižmárik, J.; Andriamainty, F. Determination of Critical Micellar Concentration of Homologous 2-AlkoxyphenylcarbamoyloxyethylMorpholinium Chlorides. Molecules 2018, 23, 1064. DOI: 10.3390/molecules23051064.
  • Ray, G. B.; Chakraborty, I.; Moulik, S. P. Pyrene Absorption Can Be a Convenient Method for Probing Critical Micellar Concentration (Cmc) and Indexing Micellar Polarity. J. Colloid Interface Sci. 2006, 294, 248–254.
  • Wang, Y.; Corbitt, T. S.; Jett, S. D.; Tang, Y.; Schanze, K. S.; Chi, E. Y.; Whitten, D. G. Direct Visualization of Bactericidal Action of Cationic Conjugated Polyelectrolytes and Oligomers. Langmuir 2012, 28, 65–−70. DOI: 10.1021/la2044569.
  • Mal, A.; Saha, A.; Dinda, G.; Ghosh, S. Effect of Carbohydrate Based Polymers on Worm-like Micelles of Cetyltrimethylammonium p-Toluenesulfonate in Aqueous Media: Detail Physicochemical and Antimicrobial Properties Survey. J. Mol. Liq. 2020, 299, 112153. DOI: 10.1016/j.molliq.2019.112153.
  • Zhou, C.; Wang, F.; Chen, H.; Li, M.; Qiao, F.; Liu, Z.; Hou, Y.; Wu, C.; Fan, Y.; Liu, L.; et al. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. ACS Appl. Mater. Interface. 2016, 8, 4242–4249. DOI: 10.1021/acsami.5b12688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.