158
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Study of antibacterial and antioxidant activities of silver nanoparticles synthesized from Tradescantia pallida (purpurea) leaves extract

, , , &
Pages 990-1000 | Received 25 Oct 2022, Accepted 08 Mar 2023, Published online: 21 Mar 2023

References

  • Mandal, S.; Marpu, S. B.; Hughes, R.; Omary, A. M.; Shi, Q. S. Green Synthesis of Silver Nanoparticles Using Cannabis sativa Extracts and Their anti-Bacterial Activity. GSC 2021, 11, 28–38. . DOI: 10.4236/gsc.2021.111004.
  • Menon, S.; Agarwal, H.; Rajesh, S.; Kumar, S. V. Green Synthesis of Silver Nanoparticles Using Medicinal Plant Acalypha indica Leaf Extracts and Its Application as an Antioxidant and Antimicrobial Agent against Foodborne Pathogens. Int. J. App. Pharm. 2017, 9, 42–50. DOI: 10.22159/ijap.2017v9i5.19464.
  • Bawazeer, S.; Rauf, A.; Shah, S. U. A.; Shawky, A. M.; Al-Awthan, Y. S.; Bahattab, O. S.; Uddin, G.; Sabir, J.; El-Esawi, M. A. Green Synthesis of Silver Nanoparticles Using Tropaeolum Majus: Phytochemical Screening and Antibacterial Studies. Green Process Synth. 2021, 10, 85–94. DOI: 10.1515/gps-2021-0003.
  • Naaz, R.; Siddiqui, V.; Qadir, S.; Siddiqi, W. A. Green Synthesis of Silver Nanoparticles Using Syngonium podophyllum Leaf Extract and Its Antibacterial Activity. Mater Today Proc. 2021, 46, 2352–2358. DOI: 10.1016/j.matpr.2021.05.062.
  • Kulkarni, R. R.; Shaiwale, N. S.; Deobagkar, D. N.; Deobagkar, D. D. Synthesis and Extracellular Accumulation of Silver Nanoparticles by Employing Radiation-Resistant Deinococcus radiodurans, Their Characterization, and Determination of Bioactivity. Int. J. Nanomed. 2015, 10, 963–974. DOI: 10.2147/IJN.S72888.
  • Penders, J.; Stolzoff, M.; Hickey, D. J.; Andersson, M.; Webster, T. J. Shape-Dependent Antibacterial Effects of Non-Cytotoxic Gold Nanoparticles. IJN 2017, 12, 2457–2468. DOI: 10.2147/IJN.S12444.
  • Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S. R. K.; Muniyandi, J.; Hariharan, N.; Eom, S. H. Biosynthesis, Purification and Characterization of Silver Nanoparticles Using Escherichia coli. Colloids Surf. B Biointerfaces 2009, 74, 328–335. DOI: 10.1016/j.colsurfb.2009.07.048.
  • Kumari, S.; Sharma, P.; Yadav, S.; Kumar, J.; Vij, A.; Rawat, P.; Kumar, S.; Sinha, C.; Bhattacharya, J.; Srivastava, C. M.; Majumder, S. A Novel Synthesis of the Graphene Oxide-Silver (GO-Ag) Nanocomposite for Unique Physiochemical Applications. ACS Omega 2020, 5, 5041–5047. DOI: 10.1021/acsomega.9b03976.
  • Novelles, M. D. T.; Ortega, A. R.; Pita, B. A.; López, M. C.; Pérez, L. D.; Medina, E. A.; Pérez, O. P. Biosynthesis of Fluorescent Silver Nanoparticles from Leea coccinea Leaves and Their Antibacterial Potentialities against Xanthomonas phaseoli pv Phaseoli. Bioresour Bioprocess 2021, 8, 1–11. DOI: 10.1186/s40643-020-00354-2.
  • Abegunde, S. M.; Idowu, K. S.; Sulaimon, A. O.; Plant-Mediated Iron Nanoparticles and Their Applications as Adsorbents for Water Treatment–A Review. J. Chem. Rev. 2020, 2, 103–113. http://www.jchemrev.com/article_103030.html. DOI: 10.33945/SAMI/JCR.2020.2.3.
  • Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment. ACS Nano 2011, 5, 8950–8957. DOI: 10.1021/nn2031319.
  • Ma, L.; Chen, W. ZnS:Cu,Co Water-Soluble Afterglow Nanoparticles: Synthesis, Luminescence and Potential Applications. Nanotechnology 2010, 21, 385604. DOI: 10.1088/0957-4484/21/38/385604.
  • Upadhyay, S. K.; Dan, S.; Pant.; M. Shaloo. Synergistic Approach of Graphene Oxide-Silver-Titanium Nanocomposite Film in Oral and Dental Studies: A New Paradigm of Infection Control in Dentistry. Biointerface Res. Appl. Chem. 2021, 11, 9680–9703. DOI: 10.33263/BRIAC112.96809703.
  • Ali, S. S.; Qazi, I. A.; Arshad, M.; Khan, Z.; Voice, T. C.; Mehmood, C. T. Photocatalytic Degradation of Low Density Polyethylene (LDPE) Films Using Titania Nanotubes. Environ. Nanotechnol. Monit. Manag. 2016, 5, 44–53. DOI: 10.1016/j.enmm.2016.01.001.
  • Qamer, S.; Romli, M. H.; Che-Hamzah, F.; Misni, N.; Joseph, N. M. S.; Haj, A. L.; Nagi, A.; Amin-Nordin, S. Systematic Review on Biosynthesis of Silver Nanoparticles and Antibacterial Activities: Application and Theoretical Perspectives. Molecules 2021, 26, 5057. DOI: 10.3390/molecules26165057.
  • Panigrahi, T. Synthesis and Characterization of Silver Nanoparticles Using Leaf Extract of Azadirachta Indica [Internet]. Department of Life Science National Institute of Technology Rourkela, India, 2013. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0.
  • Firdhouse, M. J.; Lalitha, P. Biosynthesis of Silver Nanoparticles and Its Applications. J. Nanotechnol. 2015, 2015, 1–18. DOI: 10.1155/2015/829526.
  • Arya, G.; Kumari, R. M.; Sharma, N.; Gupta, N.; Kumar, A.; Chatterjee, S.; Nimesh, S. Catalytic, Antibacterial and Antibiofilm Efficacy of Biosynthesised Silver Nanoparticles Using Prosopis juliflora Leaf Extract along with Their Wound Healing Potential. J. Photochem. Photobiol. B Biol. 2019, 190, 50–58. DOI: 10.1016/j.jphotobiol.2018.11.005.
  • Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M.; Senthil, K. T.; Rao, M. V. Catalytic Degradation of Organic Dyes Using Synthesized Silver Nanoparticles: A Green Approach. J. Bioremed. Biodegrad. 2015, 6, 1–9. DOI: 10.4172/2155-6199.1000312.
  • Dash, G.; Majeed, S.; Roslan, A. Biosynthesis of Silver Nanoparticles Using Tradescantia zebrina Aqueous Leaf Extract and Their Antibacterial Activity. ARRB 2018, 26, 1–6. DOI: 10.9734/ARRB/2018/41341.
  • Alsubki, R.; Tabassum, H.; Abudawood, M.; Rabaan, A. A.; Alsobaie, S. F.; Ansar, S. Green Synthesis, Characterization, Enhanced Functionality and Biological Evaluation of Silver Nanoparticles Based on Coriander sativum. Saudi J. Biol. Sci. 2021, 28, 2102–2108. DOI: 10.1016/j.sjbs.2020.12.055.
  • Maiti, S.; Krishnan, D.; Barman, G.; Ghosh, S. K.; Laha, K. J. Antimicrobial Activities of Silver Nanoparticles Synthesized from Lycopersicon esculentum Extract. J. Anal. Sci. Technol. 2014, 5, 1–7. DOI: 10.1186/s40543-014-0040-3.
  • Kandiah, M.; Chandrasekaran, K. N. Green Synthesis of Silver Nanoparticles Using Catharanthus roseus Flower Extracts and the Determination of Their Antioxidant, Antimicrobial, and Photocatalytic Activity. J. Nanotechnol. 2021.2021 1–18. DOI: 10.1155/2021/5512786.
  • Ali, Z. A.; Yahya, R.; Sekaran, S. D.; Puteh, R. Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antibacterial Properties. Adv. Mater. Sci. Eng. 2016, 2016, 1–6. DOI: 10.1155/2016/4102196.
  • Zarei, Z.; Razmjoue, D.; Karimi, J. Green Synthesis of Silver Nanoparticles from Caralluma tuberculata Extract and Its Antibacterial Activity. J. Inorg. Organomet. Polym. 2020, 30, 4606–4614. DOI: 10.1007/s10904-020-01586-7.
  • Moodley, J. S.; Krishna, S. B. N.; Pillay, K.; Govender.; P. Sershen. Green Synthesis of Silver Nanoparticles from Moringa oleifera Leaf Extracts and Its Antimicrobial Potential. Adv. Nat. Sci: Nanosci. Nanotechnol. 2018, 9, 15011. DOI: 10.1088/2043-6254/aaabb2.
  • Behravan, M.; Panahi, A. H.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile Green Synthesis of Silver Nanoparticles Using Berberis vulgaris Leaf and Root Aqueous Extract and Its Antibacterial Activity. Int. J. Biol. Macromol. 2019, 124, 148–154. DOI: 10.1016/j.ijbiomac.2018.11.101.
  • Nadzir, M. M.; Idris, F. N.; Hat, K. Green Synthesis of Silver Nanoparticle Using Gynura Procumbens Aqueous Extracts. In AIP Conference Proceedings, 2019, 30018. .
  • Singh, R.; Hano, C.; Nath, G.; Sharma, B. Green Biosynthesis of Silver Nanoparticles Using Leaf Extract of Carissa carandas l. And Their Antioxidant and Antimicrobial Activity against Human Pathogenic Bacteria. Biomolecules 2021, 11, 299–211. DOI: 10.3390/biom11020299.
  • Deepa; Ameen, F.; Islam, M. A.; Dhanker, R. Green Synthesis of Silver Nanoparticles from Vegetable Waste of Pea Pisum sativum and Bottle Gourd Lagenaria siceraria: Characterization and Antibacterial Properties. Front. Environ. Sci. 2022, 10, 1–11. DOI: 10.3389/fenvs.2022.941554.
  • Widatalla, H. A.; Yassin, L. F.; Alrasheid, A. A.; Rahman Ahmed, S. A.; Widdatallah, M. O.; Eltilib, S. H.; Mohamed, A. A. Green Synthesis of Silver Nanoparticles Using Green Tea Leaf Extract, Characterization and Evaluation of Antimicrobial Activity. Nanoscale Adv. 2022, 4, 911–915. DOI: 10.1039/d1na00509j.
  • Tahir, M. Y.; Ahmad, A.; Alothman, A. A.; Mushab, M. S. S.; Ali, S. Green Synthesis of Silver Nanoparticles Using Thespesia populnea Bark Extract for Efficient Removal of Methylene Blue (MB) Degradation via Photocatalysis with Antimicrobial Activity and for Anticancer Activity. Bioinorg. Chem. Appl. 2022, 2022, 1–12. DOI: 10.1155/2022/7268273.
  • Singla, S.; I Jana, A.; Thakur, R.; Kumari, C.; Goyal, S.; Pradhan, J. Green Synthesis of Silver Nanoparticles Using Oxalis griffithii Extract and Assessing Their Antimicrobial Activity. OpenNano 2022, 7, 100047. DOI: 10.1016/j.onano.2022.100047.
  • Singha, A.; Jain, D.; Upadhyaya, M. K.; Khandelwala, N.; Verma, H. N. Green Synthesis of Silver Nanoparticles Using Argemone mexicana Leaf Extract and Evaluation of Their Antimicrobial Activities. Dig. J. Nanomater. Biostruct. 2010, 5, 483–489.
  • Yousaf, H.; Mehmood, A.; Ahmad, K. S.; Raffi, M. Green Synthesis of Silver Nanoparticles and Their Applications as an Alternative Antibacterial and Antioxidant Agents. Mater. Sci. Eng. C 2020, 112, 110901. DOI: 10.1016/j.msec.2020.110901.
  • Panacek, A.; Kvıtek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizurova, N.; Sharma, V. K.; Nevecna, T.; Zboril, R. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B 2006, 110, 16248–16253. DOI: 10.1021/jp063826h.
  • Menegazzo, R. F.; Bortolucci, W.; de, C. H.; Oliveira, L. M. A.; Menegazzo, W.; Gonçalves, J. E.; Fernandez, C. M. M.; Gazim, Z. C.; Lopes, A. D. Chemical Composition of Tradescantia pallida (Rose) D.R. Hunt Var. purpurea Boom (Commelinaceae) Essential Oil. Nat. Prod. Res. 2020, 0, pp 1–5. DOI: 10.1080/14786419.2020.1765341.
  • De Lima, S. R.; Felisbino, D. G.; Lima, M. R.; Chang, R.; Martins, M. M.; Goulart, L. R.; Andrade, A. A.; Messias, D. N.; Dos Santos, R. R.; Juliatti, F. C.; Pilla, V. Fluorescence Quantum Yield of Natural Dye Extracted from Tradescantia pallida Purpurea as a Function of the Seasons: Preliminary Bioapplication as a Fungicide Probe for Necrotrophic Fungi. J. Photochem. Photobiol. B Biol. 2019, 200, 111631. DOI: 10.1016/j.jphotobiol.2019.111631.
  • Limaa, S. R.; De Felisbinoa, D. G.; Limaa, M. R. S.; Chang, R.; Martins, M. M.; Filho, L. R. G.; Andrade, A. A.; Messiasa, D. N.; Santos, R. R.; Dos Juliattid, F. C.; et al. Facile Green Synthesis of Silver Nanoparticles Using Mangifera indica Seed Aqueous Extract and Its Antimicrobial, Antioxidant and Cytotoxic Potential (3-in-1 System). Artif Cells Nanomed. Biotechnol. 2021, 49, 292–302. DOI: 10.1080/21691401.2021.1899193.
  • Rao, B.; Tang, R. C. Green Synthesis of Silver Nanoparticles with Antibacterial Activities Using Aqueous Eriobotrya japonica Leaf Extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 15014. . DOI: 10.1088/2043-6254/aa5983.
  • Li, L.; Zhang, J.; Fu, X.; Xiao, P.; Zhang, M.; Liu, M. One-Pot Solid-State Reaction Approach to Synthesize Ag-Cu2O/GO Ternary Nanocomposites with Enhanced Visible-Light-Responsive Photocatalytic Activity. Int. J. Photoenergy 2017, 2017, 1–8. https://www.hindawi.com/journals/ijp/2017/8983717/.
  • Shameli, K.; Ahmad, M. B.; Jazayeri, S. D.; Shabanzadeh, P.; Sangpour, P.; Jahangirian, H.; Gharayebi, Y. Investigation of Antibacterial Properties Silver Nanoparticles Prepared via Green Method. Chem. Cent. J. 2012, 6, 73. . DOI: 10.1186/1752-153X-6-73.
  • Banala, R. R.; Nagati, V. B.; Karnati, P. R. Green Synthesis and Characterization of Carica papaya Leaf Extract Coated Silver Nanoparticles through X-Ray Diffraction, Electron Microscopy and Evaluation of Bactericidal Properties. Saudi J. Biol. Sci. 2015, 22, 637–644. DOI: 10.1016/j.sjbs.2015.01.007.
  • Li, H.; Liu, S.; Tian, J.; Wang, L.; Lu, W.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Ternary Nanocomposites of Porphyrin, Angular Au Nanoparticles and Reduced Graphene Oxide: Photocatalytic Synthesis and Enhanced Photocurrent Generation. ChemCatChem 2012, 4, 1079–1083. DOI: 10.1002/cctc.201200128.
  • Shivakrishna, P.; Prasad, M. R.; Krishna, G.; Charya, M. A. S. Synthesis of Silver Nano Particles from Marine Bacteria Pseudomonas Aerogenosa. Octa J. Biosci. 2013, 1, 108–114.
  • Pugazhendhi, S.; Kirubha, E.; Palanisamy, P. K.; Gopalakrishnan, R. Applied Surface Science Synthesis and Characterization of Silver Nanoparticles from Alpinia calcarata by Green Approach and Its Applications in Bactericidal and Nonlinear Optics. Appl. Surf. Sci. 2015, 357, 1801–1808. DOI: 10.1016/j.apsusc.2015.09.237.
  • Tan, J. B. L.; Yap, W. J.; Tan, S. Y.; Lim, Y. Y.; Lee, S. M. Antioxidant Content, Antioxidant Activity, and Antibacterial Activity of Five Plants from the Commelinaceae Family. Antioxidants (Basel) 2014, 3, 758–769. DOI: 10.3390/antiox3040758.
  • Bhardwaj, D.; Singh, R. Green Biomimetic Synthesis of Ag–TiO2 Nanocomposite Using Origanum majorana Leaf Extract under Sonication and Their Biological Activities. Bioresour. Bioprocess 2021, 8, 1–12. DOI: 10.1186/s40643-020-00357-z.
  • Arulmozhi, S.; Mazumder, P. M.; Ashok, P.; Narayanan, S. In Vitro Antioxidant and Free Radical Scavenging Activity of Alstonia scholaris Linn. R.Br. Iran J. Pharmacol. Ther. 2007, 6, 191–196.
  • Zsembik, B. A. Health Issues in Latino Families and Households. Handb. Fam. Heal Interdiscip. Perspect. 2006, 6, 40–61.
  • Veerasamy, R.; Xin, T. Z.; Gunasagaran, S.; Xiang, T. F.; Yang, E. F. C.; Jeyakuma, N.; Dhanaraj, S. A. Biosynthesis of Silver Nanoparticles Using Mangosteen Leaf Extract and Evaluation of Their Antimicrobial Activities. J. Saudi Chem. Soc. 2011, 15, 113–120. DOI: 10.1016/j.jscs.2010.06.004.
  • Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green Synthesis of Silver Nanoparticles Using the Plant Extract of Salvia spinosa Grown in Vitro and Their Antibacterial Activity Assessment. J. Nanostruct. Chem. 2019, 9, 1–9. DOI: 10.1007/s40097-018-0291-4.
  • Martínez-Castañón, G. A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, F. Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. J. Nanopart. Res. 2008, 10, 1343–1348. DOI: 10.1007/s11051-008-9428-6.
  • H. Mondal, A.; Azam, M.; T. Siddiqui, M.; M. Rizwanul Haq, Q. Biosynthesis and Antibacterial Activity of Silver Nanoparticles. Adv. Mater. Lett. 2016, 7, 659–665. https://aml.iaamonline.org/article_14900.html. DOI: 10.5185/amlett.2016.6284.
  • Venkatesan, B.; Subramanian, V.; Tumala, A.; Vellaichamy, E. Rapid Synthesis of Biocompatible Silver Nanoparticles Using Aqueous Extract of Rosa damascena Petals and Evaluation of Their Anticancer Activity. Asian Pac. J. Trop. Med. 2014, 7, S294–S300. DOI: 10.1016/S1995-7645(14)60249-2.
  • Suriyakala, G.; Sathiyaraj, S.; Devanesan, S.; AlSalhi, M. S.; Rajasekar, A.; Kannan, M. M.; Babujanarthanam, R. Phyto Synthesis of Silver Nanoparticles from Jatropha integerrima Jacq. Flower Extract and Their Possible Applications as Antibacterial and Antioxidant Agent. Saudi J. Biol. Sci. 2022, 29, 680–688. DOI: 10.1016/j.sjbs.2021.12.007.
  • Modwi, A.; Taha, K. K.; Khezami, L.; Bououdina, M.; Houas, A. Silver Decorated Cu/ZnO Photocomposite: efficient Green Degradation of Malachite. J. Mater. Sci. Mater. Electron 2019, 30, 3629–3638. DOI: 10.1007/s10854-018-00642-w.
  • Rajakumar, G.; Gomathi, T.; Thiruvengadam, M.; Devi Rajeswari, V.; Kalpana, V. N.; Chung, I.-M. Evaluation of anti-Cholinesterase, Antibacterial and Cytotoxic Activities of Green Synthesized Silver Nanoparticles Using from Millettia pinnata Flower Extract. Microb. Pathog. 2017, 103, 123–128. DOI: 10.1016/j.micpath.2016.12.019.
  • Shetty, P. R.; Kumar, B. S.; Kumar, Y. S.; Shankar, G. G. Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus. J. Microbiol. Biotechnol. 2012, 22, 614–621. DOI: 10.4014/jmb.1107.07013.
  • Karuppiah, M.; Rajmohan, R. Green Synthesis of Silver Nanoparticles Using Ixora coccinea Leaves Extract. Mater. Lett. 2013, 97, 141–143. DOI: 10.1016/j.matlet.2013.01.087.
  • Hasnain, M. S.; Javed, M. N.; Alam, M. S.; Rishishwar, P.; Rishishwar, S.; Ali, S.; Nayak, A. K.; Beg, S. Purple Heart Plant Leaves Extract-Mediated Silver Nanoparticle Synthesis: Optimization by Box-Behnken Design. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 1105–1114. DOI: 10.1016/j.msec.2019.02.061.
  • Dissanayake, D. M. I. H.; Perera, D. D. B. D.; Keerthirathna, L. R.; Heendeniya, S.; Anderson, R. J.; Williams, D. E. C.; Peiris, L. D. Antimicrobial Activity of Plumbago indica and Ligand Screening of Plumbagin against Methicillin-Resistant Staphylococcus aureus. J. Biomol. Struct. Dyn. 2022, 40, 3273–3284. DOI: 10.1080/07391102.2020.1846622.
  • Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Silver Nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. DOI: 10.1080/26415275.2020.1796674.
  • Yin, I.; Xiaoxu, Zhang, J.; Zhao, I. S.; Mei, M. L.; Li, Q.; Chu, C. H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. DOI: 10.2147/IJN.S246764.
  • Shahzadi, I.; Aziz Shah, S. M.; Shah, M. M.; Ismail, T.; Fatima, N.; Siddique, M.; Waheed, U.; Baig, A.; Ayaz, A. Cytotoxic, and Antimicrobial Potential of Silver Nanoparticles Synthesized Using Tradescantia pallida Extract. Front. Bioeng. Biotechnol. 2022, 10, 1–13. DOI: 10.3389/fbioe.2022.907551.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.