113
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Removal of methyl blue (MB) from aqueous solution using strontium aluminoborate (SrAl2B2O7): synthesis, characterization and adsorption studies

ORCID Icon, &
Pages 1001-1009 | Received 21 Nov 2022, Accepted 08 Mar 2023, Published online: 17 Mar 2023

References

  • Becker, P. Borate Materials in Nonlinear Optics. Adv. Mater. 1998, 10, 979–992. DOI: 10.1002/(SICI)1521-4095(199809)10:13%3C979::AID-ADMA979%3E3.0.CO;2-N.
  • You, H.; Hong, G. Luminescence and Energy Transfer Phenomena of Several Rare Earth İons in the CaAl2B2O7. Mater. Res. Bull. 1997, 32, 785–790. DOI: 10.1016/S0025-5408(97)00042-1.
  • Pekgözlü, İ.; Seyyidoğlu, S.; Taşcıoğlu, S. A Novel Blue-Emitting Phosphor: BaAl2B2O7: Pb2. +J. Lumin. 2008, 128, 1541–1543. DOI: 10.1016/j.jlumin.2008.02.015.
  • Sun, J.; Sun, Y.; Lai, J.; Xia, Z.; Du, H. Luminescence Properties and Energy Transfer İnvestigations of BaAl2B2O7: Ce3+, Tb3+ Phosphors. J. Lumin. 2012, 132, 3048–3052. DOI: 10.1016/j.jlumin.2012.06.018.
  • Yang, H.; Li, C.; He, H.; Zhang, G.; Qi, Z.; Su, Q. Luminescent Properties of RE3+-Activated CaAl2B2O7 (RE = Tb, Ce) in VUV-Visible Region. J. Lumin. 2007, 124, 235–240. DOI: 10.1016/j.jlumin.2006.03.008.
  • Erdoğmuş, E.; Pekgözlü, İ. Photoluminescence Properties of CaAlBO4: M (M: Pb2+, Dy3+, and Sm3+). J. Appl. Spectrosc. 2014, 81, 394–398. DOI: 10.1007/s10812-014-9943-4.
  • He, M.; Chen, X.; Okudera, H.; Simon, A. (K1-x Na x) 2Al2B2O7 with 0≤ x< 0.6: A Promising Nonlinear Optical Crystal. Chem. Mater. 2005, 17, 2193–2196. DOI: 10.1021/cm050142y.
  • Chang, K.-S.; Keszler, D.-A. CaAl2(BO3)2O: crystal Structure. Mater. Res. Bull. 1998, 33, 299–304. DOI: 10.1016/S0025-5408(97)00217-1.
  • MacDowell, J.-F. Aluminoborate Glass‐Ceramics with Low Thermal Expansivity. J Am. Ceramic Soc. 1990, 73, 2287–2292. DOI: 10.1111/j.1151-2916.1990.tb07590.x.
  • Ren, Z.; Tao, C.; Yang, H.; Feng, S. A Novel Green Emitting Phosphor SrAl2B2O7: Tb3+. Mater. Lett. 2007, 61, 1654–1657. DOI: 10.1016/j.matlet.2006.07.161.
  • Taşcıoğlu, S.; Pekgözlü, İ.; Mergen, A. Synthesis and Photoluminescence Properties of Pb2+ Doped SrAl2B2O7. Mater. Chem. Phys. 2008, 112, 78–82. DOI: 10.1016/j.matchemphys.2008.05.031.
  • Lucas, F.; Jaulmes, S.; Quarton, M.; Le Mercier, T.; Guillen, F.; Fouassier, C. Crystal Structure of SrAl2B2O7 and Eu2+ Luminescence. J. Solid State Chem. 2000, 150, 404–409. DOI: 10.1006/jssc.1999.8616.
  • Yang, Y.; Ren, Z.; Tao, Y.; Cui, Y.; Yang, H. Eu3+ Emission in SrAl2B2O7 Based Phosphors. Curr. Appl. Phys. 2009, 9, 618–621. DOI: 10.1016/j.cap.2008.05.015.
  • Yang, Y.; Bao, A.; Lai, H.; Tao, Y.; Yang, H. Luminescent Properties of SrAl2B2O7: Ce3+, Tb3. J. Phys. Chem. Solids. 2009, 70, 1317–1321. + DOI: 10.1016/j.jpcs.2009.06.012.
  • Guo, R.-F.; Ma, Y.-Q.; Liu, Z.-H. Three Hierarchical Porous Magnesium Borate Microspheres: A Serial Preparation Strategy, Growth Mechanism and Excellent Adsorption Behavior for Congo Red. RSC Adv 2019, 9, 20009–20018. DOI: 10.1039/C9RA03654G.
  • Sun, P.; Chen, L.; Xu, L.; Zhu, W. Hierarchical Porous MgBO2(OH) Microspheres: Hydrothermal Synthesis, Thermal Decomposition, and Application as Adsorbents for Congo Red Removal. Chin. J. Chem. Eng. 2018, 26, 1561–1569. DOI: 10.1016/j.cjche.2018.01.013.
  • Ma, Y.-Q.; Liu, Z.-H. Excellent Adsorption Performance for Congo Red on Hierarchical Porous Magnesium Borate Microsphere Prepared by a Template-Free Hydrothermal Method. J. Taiwan Inst. Chem. Eng. 2018, 86, 92–100. DOI: 10.1016/j.jtice.2018.02.015.
  • Ngah, W.-W.; Teong, L.-C.; Hanafiah, M.-M. Adsorption of Dyes and Heavy Metal İons by Chitosan Composites: A Review. Carbohydr. Polym. 2011, 83, 1446–1456. DOI: 10.1016/j.carbpol.2010.11.004.
  • Pan, J.; Zhou, L.; Chen, H.; Liu, X.; Hong, C.; Chen, D.; Pan, B. Mechanistically Understanding Adsorption of Methyl Orange, İndigo Carmine, and Methylene Blue onto İonic/Nonionic Polystyrene Adsorbents. J. Hazard Mater. 2021, 418, 126300. DOI: 10.1016/j.jhazmat.2021.126300.
  • Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. Fabrication of Novel Magnetic Chitosan Grafted with Graphene Oxide to Enhance Adsorption Properties for Methyl Blue. J. Hazard. Mater. 2012, 215, 272–279. DOI: 10.1016/j.jhazmat.2012.02.068.
  • Yang, L.; Zhang, Y.; Liu, X.; Jiang, X.; Zhang, Z.; Zhang, T.; Zhang, L. The İnvestigation of Synergistic and Competitive İnteraction between Dye Congo Red and Methyl Blue on Magnetic MnFe2O4. Chem. Eng. J. 2014, 246, 88–96. DOI: 10.1016/j.cej.2014.02.044.
  • Zhang, Y.; Hui, C.; Wei, R.; Jiang, Y.; Xu, L.; Zhao, Y.; Du, L.; Jiang, H. Study on Anionic and Cationic Dye Adsorption Behavior and Mechanism of Biofilm Produced by Bacillus amyloliquefaciens DT. Appl. Surf. Sci. 2022, 573, 151627. DOI: 10.1016/j.apsusc.2021.151627.
  • Gan, L.; Shang, S.; Hu, E.; Yuen, C.-W.-M.; Jiang, S.-X. Konjac Glucomannan/Graphene Oxide Hydrogel with Enhanced Dyes Adsorption Capability for Methyl Blue and Methyl Orange. Appl. Surf. Sci. 2015, 357, 866–872. DOI: 10.1016/j.apsusc.2015.09.106.
  • Chang, A.-L.; Nguyen, B.-S.; Nguyen, V.-H.; Hu, C. Adsorption Kinetics of Methyl Blue Using Metal-Modified Barium Lanthanum Titanate as an Effective Absorbent. Mater. Chem. Phys. 2022, 276, 125363. DOI: 10.1016/j.matchemphys.2021.125363.
  • Boruah, P.-K.; Borah, D.-J.; Handique, J.; Sharma, P.; Sengupta, P.; Das, M.-R. Facile Synthesis and Characterization of Fe3O4 Nanopowder and Fe3O4/Reduced Graphene Oxide Nanocomposite for Methyl Blue Adsorption: A Comparative Study. J. Environ. Chem. Eng. 2015, 3, 1974–1985. DOI: 10.1016/j.jece.2015.06.030.
  • Demiral, H.; Demiral, I.; Tümsek, F.; Karabacakoğlu, B. Adsorption of Chromium (VI) from Aqueous Solution by Activated Carbon Derived from Olive Bagasse and Applicability of Different Adsorption Models. Chem. Eng. J. 2008, 144, 188–196. DOI: 10.1016/j.cej.2008.01.020.
  • Anirudhan, T.-S.; Ramachandran, M. Adsorptive Removal of Basic Dyes from Aqueous Solutions by Surfactant Modified Bentonite Clay (Organoclay): Kinetic and Competitive Adsorption İsotherm. Process Safety Environ. Protect. 2015, 95, 215–225. DOI: 10.1016/j.psep.2015.03.003.
  • Alver, E.; Bulut, M.; Metin, A.-Ü.; Çiftçi, H. One Step Effective Removal of Congo Red in Chitosan Nanoparticles by Encapsulation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 171, 132–138. DOI: 10.1016/j.saa.2016.07.046.
  • Bayram, O.; Köksal, E.; Göde, F.; Pehlivan, E. Decolorization of Water through Removal of Methylene Blue and Malachite Green on Biodegradable Magnetic Bauhinia Variagata Fruits. Int. J. Phytoremediation. 2022, 24, 311–323. DOI: 10.1080/15226514.2021.1937931.
  • He, M.; Chen, X.-L.; Zhou, T.; Hu, B.-Q.; Xu, Y.-P.; Xu, T. Crystal Structure and İnfrared Spectra of Na2Al2B2O7. J. Alloys Compd. 2001, 327, 210–214. DOI: 10.1016/S0925-8388(01)01561-4.
  • Nakamoto, K. Infrared Spectra of Inorganic and Coordination Compounds; Wiley: New York, USA, 1963.
  • Chryssikos, G.-D.; Bitsis, M.-S.; Kapoutsis, J.-A.; Kamitsos, E.-I. Vibrational İnvestigation of Lithium Metaborate-Metaaluminate Glasses and Crystals. J. Non-Cryst. Solids. 1997, 217, 278–290. DOI: 10.1016/S0022-3093(97)00224-X.
  • Shi, L.; Hu, L.; Zheng, J.; Zhang, M.; Xu, J. Adsorptive Removal of Methylene Blue from Aqueous Solution Using a Ni-Metal Organic Framework Material. J. Dispersion Sci. Technol. 2016, 37, 1226–1231. DOI: 10.1080/01932691.2015.1050731.
  • Shu, Y.; Shao, Y.; Wei, X.; Wang, X.; Sun, Q.; Zhang, Q.; Li, L. Synthesis and Characterization of Ni-MCM-41 for Methyl Blue Adsorption. Microporous Mesoporous Mater. 2015, 214, 88–94. DOI: 10.1016/j.micromeso.2015.05.006.
  • Xie, S.; Yang, Y.; Gai, W.-Z.; Deng, Z.-Y. Oxide Modified Aluminum for Removal of Methyl Orange and Methyl Blue in Aqueous Solution. RSC Adv. 2021, 11, 867–875. DOI: 10.1039/D0RA09048D.
  • Feng, Y.; Li, Y.; Xu, M.; Liu, S.; Yao, J. Fast Adsorption of Methyl Blue on Zeolitic İmidazolate Framework-8 and İts Adsorption Mechanism. RSC Adv. 2016, 6, 109608–109612. DOI: 10.1039/C6RA23870J.
  • Aluigi, A.; Rombaldoni, F.; Tonetti, C.; Jannoke, L. Study of Methylene Blue Adsorption on Keratin Nanofibrous Membranes. J. Hazard Mater. 2014, 268, 156–165. DOI: 10.1016/j.jhazmat.2014.01.012.
  • Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. DOI: 10.1021/ja02268a002.
  • Ayub, A.; Raza, Z.-A.; Majeed, M.-I.; Tariq, M.-R.; Irfan, A. Development of Sustainable Magnetic Chitosan Biosorbent Beads for Kinetic Remediation of Arsenic Contaminated Water. Int. J. Biol. Macromol. 2020, 163, 603–617. DOI: 10.1016/j.ijbiomac.2020.06.287.
  • Freundlich, H. Über Die Adsorption in Lösungen. Zeitschrift Für Physikalische Chemie 1907, 57, 385–470.
  • Dubinin, M.-M. The Equation of the Characteristic Curve of Activated Charcoal. In Dokl. Akad. Nauk. SSSR. 1947, 55, 327–329.
  • Scatchard, G.-D. The Attractions of Proteins for Small Molecules and İons. Ann. NY Acad. Sci. 1949, 51, 660–672. DOI: 10.1111/j.1749-6632.1949.tb27297.x.
  • Temkin, M.-J.; Pyzhev, V. Recent Modifications to Langmuir İsotherms. Acta Physiochim. USSR. 1940, 12, 217–222.
  • Li, Y.; Wang, T.; Zhang, S.; Zhang, Y.; Yu, L.; Liu, R. Adsorption and Electrochemical Behavior İnvestigation of Methyl Blue onto Magnetic Nickel-Magnesium Ferrites Prepared via the Rapid Combustion Process. J. Alloys Compd. 2021, 885, 160969. DOI: 10.1016/j.jallcom.2021.160969.
  • Liu, M.; Li, X.; Du, Y.; Han, R. Adsorption of Methyl Blue from Solution Using Walnut Shell and Reuse in a Secondary Adsorption for Congo Red. Bioresour. Technol. Rep. 2019, 5, 238–242. DOI: 10.1016/j.biteb.2018.11.006.
  • Hussain, I.; Li, Y.; Qi, J.; Li, J.; Wang, L. Nitrogen-Enriched Carbon Sheet for Methyl Blue Dye Adsorption. J. Environ. Manage. 2018, 215, 123–131. DOI: 10.1016/j.jenvman.2018.03.051.
  • Shao, Y.; Wang, X.; Kang, Y.; Shu, Y.; Sun, Q.; Li, L. Application of Mn/MCM-41 as an Adsorbent to Remove Methyl Blue from Aqueous Solution. J. Colloid Interface Sci. 2014, 429, 25–33. DOI: 10.1016/j.jcis.2014.05.004.
  • Bayram, O.; Köksal, E.; Moral, E.; Göde, F.; Pehlivan, E. Efficient Decolorization of Anionic Dye (Methyl Blue) by Natural-Based Biosorbent (nano-Magnetic Sophora Japonica Fruit Seed Biochar). EPSTEM 2022, 17, 69–82. DOI: 10.55549/epstem.1176034.
  • Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z-i-H.; Bhatti, H. N.; Nouren, S. Dyes Adsorption Using Clay and Modified Clay: A Review. J. Mol. Liq. 2018, 256, 395–407. DOI: 10.1016/j.molliq.2018.02.034.
  • Alver, E.; Metin, A. Ü. Anionic Dye Removal from Aqueous Solutions Using Modified Zeolite: Adsorption Kinetics and İsotherm Studies. Chem. Eng. J. 2012, 200, 59–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.