47
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Taguchi optimization for water defluoridation by thermally treated biosorbent developed from the waste snail shells

&
Pages 1010-1019 | Received 11 Aug 2022, Accepted 18 Mar 2023, Published online: 29 Mar 2023

References

  • Jha, P. K.; Tripathi, P. Arsenic and Fluoride Contamination in Groundwater: A Review of Global Scenarios with Special Reference to India. Groundw. Sustain. Dev. 2021, 13, 100576. DOI: 10.1016/j.gsd.2021.100576.
  • Gebremariam, A. M.; Asgedom, A. G.; Mekonnen, K. N.; Ashebir, M. E.; Gebremikael, Z. H.; Mesfin, K. A. Defluoridation of Water Using Aluminum Hydroxide Activated Carbon Biosorbents. Adv. Mater. Sci. Eng. 2022, 2022, 1–12. DOI: 10.1155/2022/4038444.
  • Jeyaseelan, A.; Aswin Kumar, I.; Naushad, M.; Viswanathan, N. Fabrication of Hydroxyapatite Embedded Cerium-Organic Frameworks for Fluoride Capture from Water. J. Mol. Liq. 2022, 354, 118830. DOI: 10.1016/j.molliq.2022.118830.
  • Zare, K.; Banihashemi, A.; Javanbakht, V.; Mohammadifard, H. Fluoride Removal from Aqueous Solutions Using Alginate Beads Modified with Functionalized Silica Particles. J. Mol. Struct. 2022, 1252, 132217. DOI: 10.1016/j.molstruc.2021.132217.
  • Jadhav, A. S.; Jadhav, M. V. Use of Response Surface Methodology for Optimization of Fluoride Removal Efficiency by Adsorption on Black Mustard Husk Ash. Mater. Today Proc. 2022, 61, 150–157. DOI: 10.1016/j.matpr.2021.07.430.
  • Zhu, L.; Zhang, C.; Wang, L.; Zhang, J. The Simple Synthesis of Metal Organic Frameworks with High Fluoride Adsorption Performance from Water. J. Solid State Chem. 2022, 307, 122866. DOI: 10.1016/j.jssc.2021.122866.
  • Afroze, S.; Sen, T. K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 1–50. DOI: 10.1007/s11270-018-3869-z.
  • Choong, C. E.; Wong, K. T.; Jang, S. B.; Nah, I. W.; Choi, J.; Ibrahim, S.; Yoon, Y.; Jang, M. Fluoride Removal by Palm Shell Waste Based Powdered Activated Carbon vs. Functionalized Carbon with Magnesium Silicate: Implications for Their Application in Water Treatment. Chemosphere 2020, 239, 124765. DOI: 10.1016/j.chemosphere.2019.124765.
  • Lee, J. I.; Hong, S. H.; Lee, C. G.; Park, S. J. Fluoride Removal by Thermally Treated Egg Shells with High Adsorption Capacity, Low Cost, and Easy Acquisition. Environ. Sci. Pollut. Res. 2021, 28, 35887–35901. 28. DOI: 10.1007/s11356-021-13284-z.
  • Burillo, J. C.; Ballinas, L.; Burillo, G.; Guerrero-Lestarjette, E.; Lardizabal-Gutierrez, D.; Silva-Hidalgo, H. Chitosan Hydrogel Synthesis to Remove Arsenic and Fluoride Ions from Groundwater. J. Hazard. Mater. 2021, 417, 126070. DOI: 10.1016/j.jhazmat.2021.126070.
  • Cruz-Briano, S. A.; Medellín-Castillo, N. A.; Torres-Dosal, A.; Leyva-Ramos, R.; Moreno-Piraján, J. C.; Giraldo-Gutiérrez, L.; Díaz-Flores, P. E.; Reyes-López, S. Y.; Ocampo-Pérez, R. Bone Char from an Invasive Aquatic Specie as a Green Adsorbent for Fluoride Removal in Drinking Water. Water Air Soil Pollut. 2021, 232, 1–19. DOI: 10.1007/s11270-021-05286-x.
  • Bhaumik, R.; Mondal, N. K.; Chattoraj, S. An Optimization Study for Defluoridation from Synthetic Fluoride Solution Using Scale of Indian Major Carp Catla (Catla Catla): An Unconventional Biosorbent. J. Fluor. Chem. 2017, 195, 57–69. DOI: 10.1016/j.jfluchem.2017.01.015.
  • Samant, A.; Nayak, B.; Misra, P. K. Kinetics and Mechanistic Interpretation of Fluoride Removal by Nanocrystalline Hydroxyapatite Derived from Limacine Artica Shells. J. Environ. Chem. Eng 2017, 5, 5429–5438. DOI: 10.1016/j.jece.2017.09.058.
  • Chang, H. Y. H.; Kuo, Y.; Liu, J. C. Science of the Total Environment Fluoride at Waste Oyster Shell Surfaces – Role of Magnesium. Sci. Total Environ. 2019, 652, 1331–1338. DOI: 10.1016/j.scitotenv.2018.10.238.
  • Lee, J. I.; Kang, J. K.; Hong, S. H.; Lee, C. G.; Jeong, S.; Park, S. J. Thermally Treated Mytilus coruscus Shells for Fluoride Removal and Their Adsorption Mechanism. Chemosphere 2021, 263, 128328. DOI: 10.1016/j.chemosphere.2020.128328.
  • Issabayeva, G.; Wong, S. H.; Pang, C. Y.; Wong, M. C.; Aroua, M. K. Fluoride Removal by Low-Cost Palm Shell Activated Carbon Modified with Prawn Shell Chitosan Adsorbents. Int. J. Environ. Sci. Technol. 2021, 19, 3731–3740. DOI: 10.1007/s13762-021-03448-2.
  • Ouafi, R.; Asri, M.; Omor, A.; Taleb, M.; Rais, Z. Snail Shells Adsorbent for Copper Removal from Aqueous Solutions and the Production of Valuable Compounds. J. Chem. 2021, 2021, 1–15. DOI: 10.1155/2021/9537680.
  • Edokpayi, J. N.; Odiyo, J. O.; Popoola, E. O.; Alayande, O. S.; Msagati, T. A. M. Synthesis and Characterization of Biopolymeric Chitosan Derived from Land Snail Shells and Its Potential for Pb2+ Removal from Aqueous Solution. Materials (Basel) 2015, 8, 8630–8640. DOI: 10.3390/ma8125482.
  • Nayak, B.; Misra, P. K. Recognition of the Surface Characteristics and Electrical Properties of a Nanocrystalline Hydroxyapatite Synthesized from Pila globosa Shells for Versatile Applications. Mater. Chem. Phys 2019, 230, 187–196. DOI: 10.1016/j.matchemphys.2019.03.068.
  • Fatimah, I.; Aulia, G. R.; Puspitasari, W.; Nurillahi, R.; Sopia, L.; Herianto, R. Microwave-Synthesized Hydroxyapatite from Paddy Fi Eld Snail (Pila ampullacea) Shell for Adsorption of Bichromate Ion. Sustain. Environ. Res. 2018, 28, 462–471. DOI: 10.1016/j.serj.2018.10.003.
  • Bambaeero, A.; Bazargan-Lari, R. Simultaneous Removal of Copper and Zinc Ions by Low Cost Natural Snail Shell/Hydroxyapatite/Chitosan Composite. Chinese J. Chem. Eng. 2021, 33, 221–230. DOI: 10.1016/j.cjche.2020.07.066.
  • Fernández-López, J. A.; Angosto, J. M.; Roca, M. J.; Doval Miñarro, M. Taguchi Design-Based Enhancement of Heavy Metals Bioremoval by Agroindustrial Waste Biomass from Artichoke. Sci. Total Environ. 2019, 653, 55–63. DOI: 10.1016/j.scitotenv.2018.10.343.
  • Ghosh, S. B.; Mondal, N. K. Application of Taguchi Method for Optimizing the Process Parameters for the Removal of Fluoride by Al-Impregnated Eucalyptus Bark Ash. Environ. Nanotechnol. Monit. Manag. 2019, 11, 1–26. DOI: 10.1016/j.enmm.2018.100206.
  • Nazari, M.; Halladj, R. Optimization of Fluoride Adsorption onto a Sonochemically Synthesized Nano-MgO/γ-Al2O3 Composite Adsorbent through Applying the L16 Taguchi Orthogonal Design. Desalin. Water Treat. 2015, 56, 2464–2476. DOI: 10.1080/19443994.2014.961558.
  • Khound, N. J.; Bharali, R. K. Biosorption of Fluoride from Aqueous Medium by Indian Sandalwood (Santalum Album) Leaf Powder. J. Environ. Chem. Eng. 2018, 6, 1726–1735. DOI: 10.1016/j.jece.2018.02.010.
  • Annan, E.; Nyankson, E.; Agyei-Tuffour, B.; Armah, S. K.; Nkrumah-Buandoh, G.; Hodasi, J. A. M.; Oteng-Peprah, M. Synthesis and Characterization of Modified Kaolin-Bentonite Composites for Enhanced Fluoride Removal from Drinking Water. Adv. Mater. Sci. Eng. 2021, 2021, 1–12. DOI: 10.1155/2021/6679422.
  • Mondal, P.; Purkait, M. K. Preparation and Characterization of Novel Green Synthesized Iron–Aluminum Nanocomposite and Studying Its Efficiency in Fluoride Removal. Chemosphere 2019, 235, 391–402. DOI: 10.1016/j.chemosphere.2019.06.189.
  • Beltrame, K. K.; Cazetta, A. L.; de Souza, P. S. C.; Spessato, L.; Silva, T. L.; Almeida, V. C. Adsorption of Caffeine on Mesoporous Activated Carbon Fibers Prepared from Pineapple Plant Leaves. Ecotoxicol. Environ. Saf. 2018, 147, 64–71. DOI: 10.1016/j.ecoenv.2017.08.034.
  • Sengupta, P.; Saha, S.; Banerjee, S.; Dey, A.; Sarkar, P. Removal of Fluoride Ion from Drinking Water by a New Fe(OH)3/Nano CaO Impregnated Chitosan Composite Adsorbent. Polym. Technol. Mater. 2020, 59, 1191–1203. DOI: 10.1080/25740881.2020.1725567.
  • Pandi, K.; Viswanathan, N.; Meenakshi, S. Hydrothermal Synthesis of Magnetic Iron Oxide Encrusted Hydrocalumite-Chitosan Composite for Defluoridation Studies. Int. J. Biol. Macromol. 2019, 132, 600–605. DOI: 10.1016/j.ijbiomac.2019.03.115.
  • Mohan, R.; Dutta, R. K. Journal of Environmental Chemical Engineering a Study of Suitability of Limestone for Fluoride Removal by Phosphoric Acid-Crushed Limestone Treatment. J. Environ. Chem. Eng. 2020, 8, 104410. DOI: 10.1016/j.jece.2020.104410.
  • Khachani, M.; El Hamidi, A.; Halim, M.; Arsalane, S. Non-Isothermal Kinetic and Thermodynamic Studies of the Dehydroxylation Process of Synthetic Calcium Hydroxide Ca(OH)2. J. Mater. Environ. Sci. 2014, 5, 615–624.
  • Nehra, S.; Raghav, S.; Kumar, D. Biomaterial Functionalized Cerium Nanocomposite for Removal of Fluoride Using Central Composite Design Optimization Study. Environ. Pollut. 2020, 258, 113773. DOI: 10.1016/j.envpol.2019.113773.
  • Razmi, B.; Ghasemi-Fasaei, R.; Ronaghi, A.; Mostowfizadeh-Ghalamfarsa, R. Mostowfizadeh-Ghalamfarsa, R. Investigation of Factors Affecting Phytoremediation of Multi-Elements Polluted Calcareous Soil Using Taguchi Optimization. Ecotoxicol. Environ. Saf. 2021, 207, 2020), 111315. DOI: 10.1016/j.ecoenv.2020.111315.
  • Kundu, A.; Sen Gupta, B.; Hashim, M. A.; Redzwan, G. Taguchi Optimization Approach for Production of Activated Carbon from Phosphoric Acid Impregnated Palm Kernel Shell by Microwave Heating. J. Clean. Prod. 2015, 105, 420–427. DOI: 10.1016/j.jclepro.2014.06.093.
  • Amalraj, A.; Pius, A. Removal of Fluoride from Drinking Water Using Aluminum Hydroxide Coated Activated Carbon Prepared from Bark of Morinda Tinctoria. Appl. Water Sci. 2017, 7, 2653–2665. DOI: 10.1007/s13201-016-0479-z.
  • Yitbarek, M.; Abdeta, K.; Beyene, A.; Astatkie, H.; Dadi, D.; Desalew, G.; Van der Bruggen, B. Experimental Evaluation of Sorptive Removal of Fluoride from Drinking Water Using Natural and Brewery Waste Diatomite. Process Saf. Environ. Prot. 2019, 128, 95–106. DOI: 10.1016/j.psep.2019.05.052.
  • Siddique, A.; Nayak, A. K.; Singh, J. Synthesis of FeCl3-Activated Carbon Derived from Waste Citrus limetta Peels for Removal of Fluoride: An Eco-Friendly Approach for the Treatment of Groundwater and Bio-Waste Collectively. Groundw. Sustain. Dev. 2020, 10, 100339. DOI: 10.1016/j.gsd.2020.100339.
  • Awual, R.; Hasan, M. A Ligand Based Innovative Composite Material for Selective Lead (II) Capturing from Wastewater. J. Mol. Liq. 2019, 294, 111679. DOI: 10.1016/j.molliq.2019.111679.
  • Wendimu, G.; Zewge, F.; Mulugeta, E. Aluminium-Iron-Amended Activated Bamboo Charcoal (AIAABC) for Fluoride Removal from Aqueous Solutions. J. Water Process Eng. 2017, 16, 123–131. DOI: 10.1016/j.jwpe.2016.12.012.
  • Mukkanti, V. B.; Tembhurkar, A. R. Defluoridation of Water Using Adsorbent Derived from the Labeo Rohita (Rohu) Fish Scales Waste: Optimization, Isotherms, Kinetics, and Thermodynamic Study. Sustain. Chem. Pharm. 2021, 23, 100520. DOI: 10.1016/j.scp.2021.100520.
  • Angelin, A.; Kalpana, M.; Govindan, K.; Kavitha, S. Characterizations and Fluoride Adsorption Performance of Wattle Humus Biosorbent. Environ. Sci. Pollut. Res. 2021, 1-14. DOI: 10.1007/s11356-021-14864-9.
  • Mihayo, D.; Vegi, M. R.; Vuai, S. A. H. Defluoridation of Aqueous Solution Using Raw and Surface Modified Biosorbents Prepared from Adansonia Digitata Fruit Pericarp. J. Dispers. Sci. Technol. 2021, 0, 1–13. DOI: 10.1080/01932691.2021.1880925.
  • Murambasvina, G.; Mahamadi, C. Effective Fluoride Adsorption Using Water Hyacinth Beads Doped with Hydrous Oxides of Aluminium and Iron. Groundw. Sustain. Dev. 2020, 10, 100302. DOI: 10.1016/j.gsd.2019.100302.
  • Dhillon, A.; Soni, S. K.; Kumar, D. Enhanced Fluoride Removal Performance by Ce–Zn Binary Metal Oxide Adsorption Characteristics and Mechanism. J. Fluor. Chem. 2017, 199, 67–76. DOI: 10.1016/j.jfluchem.2017.05.002.
  • Araga, R.; Soni, S.; Sharma, C. S. Fluoride Adsorption from Aqueous Solution Using Activated Carbon Obtained from KOH-Treated Jamun (Syzygium cumini) Seed. J. Environ. Chem. Eng. 2017, 5, 5608–5616. DOI: 10.1016/j.jece.2017.10.023.
  • Sadhu, M.; Bhattacharya, P.; Vithanage, M.; Sudhakar, P. P. Adsorptive Removal of Fluoride Using Biochar; A Potential Application in Drinking Water Treatment. Sep. Purif. Technol. 2021, 278, 119106. DOI: 10.1016/j.seppur.2021.119106.
  • Chen, G. J.; Peng, C. Y.; Fang, J. Y.; Dong, Y. Y.; Zhu, X. H.; Cai, H. M. Biosorption of Fluoride from Drinking Water Using Spent Mushroom Compost Biochar Coated with Aluminum Hydroxide. Desalin. Water Treat. 2016, 57, 12385–12395. DOI: 10.1080/19443994.2015.1049959.
  • Chen, J.; Yang, R.; Zhang, Z.; Wu, D. Removal of Fluoride from Water Using Aluminum Hydroxide-Loaded Zeolite Synthesized from Coal Fly Ash. J. Hazard Mater. 2022, 421, 126817. DOI: 10.1016/j.jhazmat.2021.126817.
  • Raghav, S.; Kumar, D. Adsorption Equilibrium, Kinetics, and Thermodynamic Studies of Fluoride Adsorbed by Tetrametallic Oxide Adsorbent. J. Chem. Eng. Data 2018, 63, 1682–1697. DOI: 10.1021/acs.jced.8b00024.
  • Tran, H. N.; You, S. J.; Chao, H. P. Thermodynamic Parameters of Cadmium Adsorption onto Orange Peel Calculated from Various Methods: A Comparison Study. J. Environ. Chem. Eng. 2016, 4, 2671–2682. DOI: 10.1016/j.jece.2016.05.009.
  • Lai, Y. Q.; Yang, K.; Yang, C.; Tian, Z. L.; Guo, W. C.; Li, J. Thermodynamics and Kinetics of Fluoride Removal from Simulated Zinc Sulfate Solution by La(III)-Modified Zeolite. Trans. Nonferrous Met. Soc. China (English Ed) 2018, 28, 783–793. DOI: 10.1016/S1003-6326(18)64711-9.
  • Tran, H. N. Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient K D(q e/C e) or Freundlich Constant (K F): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions. Adsorpt. Sci. Technol. 2022, 2022, 1–23. DOI: 10.1155/2022/5553212.
  • Sawangjang, B.; Induvesa, P.; Wongrueng, A.; Pumas, C.; Wattanachira, S.; Rakruam, P.; Punyapalakul, P.; Takizawa, S.; Khan, E. Evaluation of Fluoride Adsorption Mechanism and Capacity of Different Types of Bone Char. IJERPH 2021, 18, 6878. DOI: 10.3390/ijerph18136878.
  • Nigri, E. M.; Bhatnagar, A.; Rocha, S. D. F. Thermal Regeneration Process of Bone Char Used in the Fluoride Removal from Aqueous Solution. J. Clean. Prod. 2017, 142, 3558–3570. DOI: 10.1016/j.jclepro.2016.10.112.
  • Alkurdi, S. S. A.; Al-Juboori, R. A.; Bundschuh, J.; Bowtell, L.; McKnight, S. Effect of Pyrolysis Conditions on Bone Char Characterization and Its Ability for Arsenic and Fluoride Removal. Environ. Pollut. 2020, 262, 114221. DOI: 10.1016/j.envpol.2020.114221.
  • Shahid, M. K.; Kim, J. Y.; Choi, Y. G. Synthesis of Bone Char from Cattle Bones and Its Application for Fluoride Removal from the Contaminated Water. Groundw. Sustain. Dev. 2019, 8, 324–331. DOI: 10.1016/j.gsd.2018.12.003.
  • Nigri, E. M.; Cechinel, M. A. P.; Mayer, D. A.; Mazur, L. P.; Loureiro, J. M.; Rocha, S. D. F.; Vilar, V. J. P. Cow Bones Char as a Green Sorbent for Fluorides Removal from Aqueous Solutions: Batch and Fixed-Bed Studies. Environ. Sci. Pollut. Res. 2017, 24, 2364–2380. DOI: 10.1007/s11356-016-7816-5.
  • Rojas-Mayorga, C. K.; Silvestre-Albero, J.; Aguayo-Villarreal, I. A.; Mendoza-Castillo, D. I.; Bonilla-Petriciolet, A. A New Synthesis Route for Bone Chars Using CO2 Atmosphere and Their Application as Fluoride Adsorbents. Microporous Mesoporous Mater. 2015, 209, 38–44. DOI: 10.1016/j.micromeso.2014.09.002.
  • Vakili, M.; Deng, S.; Shen, L.; Shan, D.; Liu, D.; Yu, G. Regeneration of Chitosan-Based Adsorbents for Eliminating Dyes from Aqueous Solutions. Sep. Purif. Rev. 2019, 48, 1–13. DOI: 10.1080/15422119.2017.1406860.
  • Omorogie, M. O.; Babalola, J. O.; Unuabonah, E. I. Regeneration Strategies for Spent Solid Matrices Used in Adsorption of Organic Pollutants from Surface Water: A Critical Review. Desalin. Water Treat. 2016, 57, 518–544. DOI: 10.1080/19443994.2014.967726.
  • Awual, M. R. New Type Mesoporous Conjugate Material for Selective Optical Copper(II) Ions Monitoring & Removal from Polluted Waters. Chem. Eng. J. 2017, 307, 85–94. DOI: 10.1016/j.cej.2016.07.110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.