95
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fish waste capped and colloidal nanosilver and its valorization as natural zeolite conjugates for application in aquaculture

, , , , , & show all
Pages 1281-1295 | Received 26 Jul 2022, Accepted 15 Apr 2023, Published online: 07 May 2023

References

  • Krishnani, K. K.; Boddu, V. M.; Chadha, N. K.; Chakraborty, P.; Kumar, J.; Krishna, G.; Pathak, H. Metallic and Non-Metallic Nanoparticles from Plant, Animal, and Fisheries Wastes: Potential and Valorization for Application in Agriculture. Environ. Sci. Pollut. Res. Int. 2022, 29, 81130–81165. DOI: 10.1007/s11356-022-23301-4.
  • Camacho-Jiménez, L.; Álvarez-Sánchez, A. R.; Mejía-Ruíz, C. H. Silver Nanoparticles (AgNPs) as Antimicrobials in Marine Shrimp Farming: A Review. Aquacult. Rep. 2020, 18, 100512. DOI: 10.1016/j.aqrep.2020.100512.
  • Kumar, N.; Krishnani, K. K.; Gupta, S. K.; Singh, N. P. Effects of Silver Nanoparticles on Stress Biomarkers of Channa Striatus: Immuno-Protective or Toxic? Environ. Sci. Pollut. Res. Int. 2018, 25, 14813–14826. DOI: 10.1007/s11356-018-1628-8.
  • Ahamed, M.; AlSalhi, M. S.; Siddiqui, M. K. J. Silver Nanoparticle Applications and Human Health. Clin. Chim. Acta 2010, 411, 1841–1848. DOI: 10.1016/j.cca.2010.08.016.
  • Kumar, N.; Krishnani, K. K.; Kumar, P.; Sharma, R.; Baitha, R.; Singh, D. K.; Singh, N. P. Dietary Nano-Silver: Does Support or Discourage Thermal Tolerance and Biochemical Status in Airbreathing Fish Reared under Multiple Stressors? J. Therm. Biol. 2018, 77, 111–121. DOI: 10.1016/j.jtherbio.2018.08.011.
  • Gu, W.; Wu, C.; Chen, J.; Xiao, Y. Nanotechnology in the Targeted Drug Delivery for Bone Diseases and Bone Regeneration. Int. J. Nanomedicine 2013, 8, 2305–2317. DOI: 10.2147/IJN.S44393.
  • Rai, M.; Ingle, A. Role of Nanotechnology in Agriculture with Special Reference to Management of Insect Pests. Appl. Microbiol. Biotechnol. 2012, 94, 287–293. DOI: 10.1007/s00253-012-3969-4.
  • Al-Akhras, M.; Ali; Shakhatreh, M. N.; Chamroukhi, H.; Telfah, A.; Tavares, C. J. Optical, Electrical and Morphological Properties of (PANI/CSA-PEO)/(AgNPs-AgNO3) Nanocomposite Films. Physica B 2022, 634, (413636. DOI: 10.1016/j.physb.2021.413636.
  • Seekonda, S.; Rani, R. Eco-Friendly Synthesis, Characterization, Catalytic, Antibacterial, Antidiabetic, and Antioxidant Activities of Embelia Robusta Seeds Extract Stabilized AgNPs. J. Sci. Adv. Mater. Devices 2022, 7, 100480. DOI: 10.1016/j.jsamd.2022.100480.
  • Sarmast, M. S.; Sedaghat, S.; Derakhshi, P.; Azar, P. A. Facile Fabrication of Silver Nanoparticles Grafted with Fe3O4-Chitosan for Efficient Removal of Amoxicillin from Aqueous Solution: Application of Central Composite Design. J. Polym Environ. 2022, 30, 2990–3004. DOI: 10.1007/s10924-022-02402-8.
  • Yari, A.; Yari, M.; Sedaghat, S.; Delbari, A. S. Facile Green Preparation of Nano-Scale Silver Particles Using Chenopodium Botrys Water Extract for the Removal of Dyes from Aqueous Solution. J. Nanostruct. Chem. 2021, 11, 423–435. DOI: 10.1007/s40097-020-00377-3.
  • Junejo, Y.; Baykal.; A.; Sirajuddin. Green Chemical Synthesis of Silver Nanoparticles and Its Catalytic Activity. J. Inorg. Organomet. Polym. 2014, 24, 401–406. DOI: 10.1007/s10904-013-9974-y.
  • Manoiu, V. S.; Aloman, A. Obtaining Silver Nanoparticles by Sonochemical Methods. UPB Scientific Bulletin B: Chemistry and Materials Science 2010, 72, 179–118.
  • Starowicz, M.; Stypuła, B.; Banaś, J. Electrochemical Synthesis of Silver Nanoparticles. Electrochem. Commun. 2006, 8, 227–230. DOI: 10.1016/j.elecom.2005.11.018.
  • Arasu, V. T.; Prabhu, D.; Soniya, M. Stable Silver Nanoparticles Synthesizing Methods and Its Applications. J. Biosci. Res. 2010, 1, 259–270.
  • Sidhu, A. K.; Verma, N.; Kaushal, P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. Front. Nanotechnol. 2022, 3, 1–17. DOI: 10.3389/fnano.2021.801620.
  • Saeb, A. T. M.; Alshammari, A. S.; Hessa, A.-B.; Khalid, A. Al-Rubeaan, Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria. ScientificWorldJournal 2014, 2014, 704708. DOI: 10.1155/2014/704708.
  • Velgosova, O.; Mačák, L.; Lisnichuk, M.; Vojtko, M. Synthesis and Analysis of Polymorphic Silver Nanoparticles and Their Incorporation into the Polymer Matrix. Polymers 2022, 14, 2666. DOI: 10.3390/polym14132666.
  • Moradi, F.; Sedaghat, S.; Moradi, O.; Salmanabadi, S. A. Review on Green Nano-Biosynthesis of Silver Nanoparticles and Their Biological Activities: With an Emphasis on Medicinal Plants. J. Nanostruct. Chem. 2021, 51, 133–142. DOI: 10.1080/24701556.2020.1769662.
  • Khan, M. S.; Qureshi, N. A.; Jabeen, F.; Asghar, M. S.; Shakeel, M.; Fakhar-e-Alam, M. Eco-Friendly Synthesis of Silver Nanoparticles through Economical Methods and Assessment of Toxicity through Oxidative Stress Analysis in the Labeo Rohita. Biol. Trace Elem. Res. 2017, 176, 416–428. DOI: 10.1007/s12011-016-0838-5.
  • Krishnaraj, C.; Harper, S. L.; Yun, S. I. In Vivo Toxicological Assessment of Biologically Synthesized Silver Nanoparticles in Adult Zebrafish (Danio rerio). J. Hazard Mater. 2016, 301, 480–491. DOI: 10.1016/j.jhazmat.2015.09.022.
  • Samaddar, P.; Ok, Y. S.; Kim, K. H.; Kwon, E. E.; Tsang, D. C. Synthesis of Nanomaterials from Various Wastes and Their New Age Applications. J. Cleaner Prod. 2018, 197, 1190–1209. DOI: 10.1016/j.jclepro.2018.06.262.
  • Xu, D.; Lv, H.; Liu, B. Encapsulation of Metal Nanoparticle Catalysts within Mesoporous Zeolites and Their Enhanced Catalytic Performances: A Review. Front. Chem 2018, 6, 1–14. DOI: 10.3389/fchem.2018.00550.
  • Abdullah, A. A.; Mansor, B. A.; Mohd Zobir, H.; Ibrahim, N. A.; Saleh, T. A. Copper Oxide Nanoparticles-Loaded Zeolite and Its Characteristics and Antibacterial Activities. J. Mater. Sci. Technol. 2017, 33, 889–896. DOI: 10.1016/j.jmst.2017.03.015.
  • Javed, R.; Zia, M.; Naz, S.; Aisida, S. O.; Ain, N. U.; Ao, Q. Role of Capping Agents in the Application of Nanoparticles in Biomedicine and Environmental Remediation: Recent Trends and Future Prospects. J. Nanobiotechnol. 2020, 18, 172. DOI: 10.1186/s12951-020-00704-4.
  • Kumar, A.; Das, N.; Satija, N. K.; Mandrah, K.; Roy, S. K.; Rayavarapu, R. G. A Novel Approach towards Synthesis and Characterization of Non-Cytotoxic Gold Nanoparticles Using Taurine as Capping Agent. Nanomaterials 2019, 10, 45. DOI: 10.3390/nano10010045.
  • Kaur, K.; Sidhu, A. K.; Priya, N. Green Synthesis: An Eco-Friendly Route for the Synthesis of Iron Oxide Nanoparticles. Front. Nanotechnol. 2021, 3, 47. DOI: 10.3389/fnano.2021.655062.
  • Kobayashi, M.; Msangi, S.; Batka, M.; Vannuccini, S.; Dey, M. M.; Anderson, J. L. Fish to 2030: The Role and Opportunity for Aquaculture. Aquac. Econ. Manag. 2015, 19, 282–300. DOI: 10.1080/13657305.2015.994240.
  • FAO. Fishery and aquaculture statistics. Global aquaculture production 1950-2018 (Fishstat J) FAO Fish. 2020. www.fao.org/fishery/statistics/software/fishstatj/en.
  • Jha, A. K.; Prasad, K. Green Synthesis of Silver Nanoparticles and Its Activity on SiHa Cervical Cancer Cell Line. Adv. Mater. Lett. 2014, 5, 501–505. DOI: 10.5185/amlett.2014.4563.
  • Coppola, D.; Lauritano, C.; Esposito, F. P.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish Waste from Problem to Valuable Resource. Mar. Drugs. 2021, 19, 116. DOI: 10.3390/md19020116.
  • Sinha, T.; Ahmaruzzaman, M.; Sil, A. K.; Bhattacharjee, A. Biomimetic Synthesis of Silver Nanoparticles Using the Fish Scales of Labeo rohita and Their Application as Catalysts for the Reduction of Aromatic Nitro Compounds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 131, 413–423. DOI: 10.1016/j.saa.2014.04.065.
  • APHA. Standard Methods for the Examination of Water and Wastewater. American Public health Association, Washington, DC, 1989.
  • Marișca, O. T.; Leopold, N. Anisotropic Gold Nanoparticle-Cell Interactions Mediated by Collagen. Materials 2019, 12, 1131. DOI: 10.3390/ma12071131.
  • Ravindran, R.; Jaiswal, A. K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. DOI: 10.1016/j.tibtech.2015.10.008.
  • Jha, A. K.; Prasad, K, Aryabhatta Centre for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna 800 001, India Synthesis of ZnO Nanoparticles from Goat Slaughter Waste for Environmental Protection. Int. J. Curr. Eng. Technol. 2011, 6, 147–151. DOI: 10.14741/Ijcet/22774106/6.612016.26.
  • Alshatwi, A. A.; Athinarayananm, J.; Periasamy, V. S. Method of Fabricating Nanostructures from Fish Waste. U.S. Patent, 2019, 10383976.
  • Bhaskar, S. P.; Vijayan, M.; Jagirdar, B. R. Size Modulation of Colloidal Au Nanoparticles via Digestive Ripening in Conjunction with a Solvated Metal Atom Dispersion Method: An Insight into Mechanism. J. Phys. Chem. C 2014, 118, 18214–18225. DOI: 10.1021/jp505121b.
  • Shu, M.; He, F.; Li, Z.; Zhu, X.; Ma, Y.; Zhou, Z.; Yang, Z.; Gao, F.; Zeng, M. Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Yeast Extract as Reducing and Capping Agents. Nanoscale Res. Lett. 2020, 15, 1–9. DOI: 10.1186/s11671-019-3244-z.
  • Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green Synthesis of Silver Nanoparticles from Leaf Extract of Mimusops elengi, Linn. for Enhanced Antibacterial Activity against Multi-Drug Resistant Clinical Isolates. Colloids Surf. B Biointerfaces 2013, 108, 255–259. DOI: 10.1016/j.colsurfb.2013.03.017.
  • Niraimathi, K. L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of Silver Nanoparticles Using Alternanthera sessilis (Linn.) Extract and Their Antimicrobial, Antioxidant Activities. Colloids Surf. B Biointerfaces 2013, 102, 288–291. DOI: 10.1016/j.colsurfb.2012.08.041.
  • Wigginton, N. S.; de Titta, A.; Piccapietra, F.; Dobias, J.; Nesatyy, V. J.; Suter, M. J. F.; Bernier-Latmani, R. Binding of Silver Nanoparticles to Bacterial Proteins Depends on Surface Modifications and Inhibits Enzymatic Activity. Environ. Sci. Technol. 2010, 44, 2163–2168. DOI: 10.1021/es903187s.
  • Momin, B.; Rahman, S.; Jha, N.; Annapure, U. S. Valorization of Mutant Bacillus licheniformis M09 Supernatant for Green Synthesis of Silver Nanoparticles: Photocatalytic Dye Degradation, Antibacterial Activity, and Cytotoxicity. Bioprocess Biosyst. Eng. 2019, 42, 541–553. DOI: 10.1007/s00449-018-2057-2.
  • Eze, F. N.; Nwabor, O. F. Valorization of Pichia Spent Medium via One-Pot Synthesis of Biocompatible Silver Nanoparticles with Potent Antioxidant, Antimicrobial, Tyrosinase Inhibitory and Reusable Catalytic Activities. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 115, 111104. DOI: 10.1016/j.msec.2020.111104.
  • Krishnani, K. K.; Zhang, Y.; Xiong, L.; Yan, Y.; Boopathy, R.; Mulchandani, A. Bactericidal and Ammonia Removal Activity of Silver Ion-Exchanged Zeolite. Bioresour. Technol. 2012, 117, 86–91. DOI: 10.1016/j.biortech.2012.04.044.
  • Qu, X.; Alvarez, P. J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47, 3931–3946. DOI: 10.1016/j.watres.2012.09.058.
  • Sinha, S. N.; Paul, D.; Halder, N.; Sengupta, D.; Patra, S. K. Green Synthesis of Silver Nanoparticles Using Freshwater Green Alga Pithophoraoedogonia (Mont.) Wittrock and Evaluation of Their Antibacterial Activity. Appl. Nanosci. 2015, 5, 703–709. DOI: 10.1007/s13204-014-0366-6.
  • Firdhouse, M. J.; Lalitha, P. Biosynthesis of Silver Nanoparticles and Its Applications. J. Nanotechnol. 2015, 2015, 1–18. DOI: 10.1155/2015/829526.
  • Jo, Y. K.; Seo, J. H.; Choi, B. H.; Kim, B. J.; Shin, H. H.; Hwang, B. H.; Cha, H. J. Surface-Independent Antibacterial Coating Using Silver Nanoparticle-Generating Engineered Mussel Glue. ACS Appl. Mater. Interfaces 2014, 6, 20242–20253. DOI: 10.1021/am505784k.
  • Oliviya, C. R. Production of Eco-Friendly Silver Nanoparticle and Evaluation of Its Potential Antimicrobial Activity. Res. J. Pharm. Technol. 2015, 8, 1374–1378. DOI: 10.5958/0974-360X.2015.00246.2.
  • De Silva, C.; Nawawi, N. M.; Abd Karim, M. M.; Abd Gani, S.; Masarudin, M. ;J.; Gunasekaran, B.; Ahmad, S. A. The Mechanistic Action of Biosynthesised Silver Nanoparticles and Its Application in Aquaculture and Livestock Industries. Animals (Basel )2021, 11, 2097. DOI: 10.3390/ani11072097.
  • Konigs, A. M.; Flemming, H. C.; Wingender, J. Nanosilver Induces a Non-Culturable but Metabolically Active State in Pseudomonas aeruginosa. Front. Microbiol. 2015, 6, 395. DOI: 10.3389/fmicb.2015.00395.
  • Singh, P.; Garg, A.; Pandit, S.; Mokkapati, V.; R. S. S.; Mijakovic, I. Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials 2018, 8, 1009. DOI: 10.3390/nano8121009.
  • Puja, P.; Kumar, P. A Perspective on Biogenic Synthesis of Platinum Nanoparticles and Their Biomedical Applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 211, 94–99. DOI: 10.1016/j.saa.2018.11.047.
  • Mulenos, M.; Henry, R.; Lujan, L.; Pitts, R.; Sayes, C. M. Silver Nanoparticles Agglomerate Intracellularly Depending on the Stabilizing Agent: Implications for Nanomedicine Efficacy. Nanomaterials 2020, 10, 1953. DOI: 10.3390/nano10101953.
  • Oliveira, M.; Ugarte, D.; Zanchet, D.; Zarbin, A. Influence of Synthetic Parameters on the Size, Structure, and Stability of Dodecanethiol-Stabilized Silver Nanoparticles. J. Colloid Interface Sci. 2005, 292, 429–435. DOI: 10.1016/j.jcis.2005.05.068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.