93
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The characteristics of gas-liquid dispersive mixing and microbubble generation in turbulent adjustable jet flow field

, , , , &
Pages 1307-1318 | Received 10 Feb 2023, Accepted 17 Apr 2023, Published online: 28 Apr 2023

References

  • Rajapakse, N.; Zargar, M.; Sen, T.; Khiadani, M. Effects of Influent Physicochemical Characteristics on Air Dissolution, Bubble Size and Rise Velocity in Dissolved Air Flotation: A Review. Sep. Purif. Technol. 2022, 289, 120772. DOI: 10.1016/j.seppur.2022.120772.
  • Swart, B.; Zhao, Y.; Khaku, M.; Che, E.; Maltby, R.; Chew, Y. M. J.; Wenk, J. In Situ Characterisation of Size Distribution and Rise Velocity of Microbubbles by High-Speed Photography. Chem. Eng. Sci. 2020, 225, 115836. DOI: 10.1016/j.ces.2020.115836.
  • Li, M.; Xu, M.; Sun, L.; Zhu, C.; Liu, J.; Liu, Q.; Xing, Y.; Gui, X. Effects of Surface Microbubbles on the Adhesion between Air Bubble/Oil Droplet and Graphite Surfaces. Colloids Surf., A. 2023, 660, 130809. DOI: 10.1016/j.colsurfa.2022.130809.
  • Ding, G. D.; Chen, J. Q.; Wang, C. S.; Shang, C.; Liu, M. L.; Cai, X. L.; Ji, Y. P. Structural Design and Numerical Simulation of Axial-Swirling Typemicro-Bubble Generator. Adv. New Renewable Energy 2016, 4, 56–61.
  • Temesgen, T.; Thuy, T.; Mooyoung, B.; Tschung-Il, H.; Hyunju, K. Micro and Nanobubble Technologies as a New Horizon for Water-Treatment Techniques: A Review. Adv. Colloid Interface Sci. 2017, 246, 40–51. DOI: 10.1016/j.cis.2017.06.011.
  • Wang, X. Y.; Shuai, Y.; Zhang, H. M.; Sun, J. Y.; Yang, Y.; Huang, Z. L.; Jiang, B. B.; Liao, Z. W.; Wang, J. D.; Yang, Y. R. Bubble Breakup in a Swirl-Venturi Microbubble Generator. Chem. Eng. J. 2021, 403, 126397. DOI: 10.1016/j.cej.2020.126397.
  • Uesawa, S.; Kaneko, A.; Nomura, Y.; Abe, Y. Study on Bubble Breakup Behavior in a Venturi Tube. MultScienTechn 2012, 24, 257–277. DOI: 10.1615/MultScienTechn.v24.i3.50.
  • Chen, J. Q. Principle and Design of Environmental Protection Equipment; China Petrochemical Press: Beijing, 2019; pp 128–149.
  • Liu, N. N. Study on Evolutionary Process and Load Characteristics of the Bubble near a Free Surface in Confined Fluid Domain, D; Harbin Engineering University: Harbin, 2019.
  • Li, X.; Ma, X.; Zhang, L.; Zhang, H. Dynamic Characteristics of Ventilated Bubble Moving in Micro Scale Venturi. Chem. Eng. Proces 2016, 100, 79–86. DOI: 10.1016/j.cep.2015.11.009.
  • Zhang, W.; Chen, X.; Pan, W.; Xu, J. Numerical Simulation of Wake Structure and Particle Entrainment Behavior during a Single Bubble Ascent in Liquid-Solid System. Chem. Eng. Sci. 2022, 253, 117573. DOI: 10.1016/j.ces.2022.117573.
  • Wu, Y.; Chen, H.; Song, X. Experimental and Numerical Study on the Bubble Dynamics and Flow Field of a Swirl Flow Microbubble Generator with Baffle Internals. Chem. Eng. Sci. 2022, 263, 118066. DOI: 10.1016/j.ces.2022.118066.
  • Hasan, B. O. Experimental Study on the Bubble Breakage in a Stirred Tank. Part 1. Mechanism and Effect of Operating Parameters. Int. J. Multiphase Flow 2017, 97, 94–108. DOI: 10.1016/j.ijmultiphaseflow.2017.08.006.
  • Wang, T.; Wang, J.; Yong, J. A Novel Theoretical Breakup Kernel Function for Bubbles/Droplets in a Turbulent Flow. Chem. Eng. Sci. 2003, 58, 4629–4637. DOI: 10.1016/j.ces.2003.07.009.
  • Pigeonneau, F.; Pereira, L.; Laplace, A. Dynamics of Rising Bubble Population Undergoing Mass Transfer and Coalescence in Highly Viscous Liquid. Chem. Eng. J. 2023, 455, 140920.
  • Patra, S.; Tamhankar, S.; Parmar, R. Mathematical Modeling of Bubble Size Distribution in Bubble Column. Mater. Today: Proc 2023, 72, 2637–2642. DOI: 10.1016/j.matpr.2022.08.277.
  • Lad, V. N.; Murthy, Z. P. Breakup of Free Liquid Jets Influenced by External Mechanical Vibrations. Fluid Dyn. Res. 2017, 49, 015503. DOI: 10.1088/0169-5983/49/1/015503.
  • Mulbah, C.; Kang, C.; Mao, N.; Zhang, W.; Shaikh, A. R.; Teng, S. A Review of VOF Methods for Simulating Bubble Dynamics. Prog. Nucl. Energy, Ser 2022, 154, 104478. DOI: 10.1016/j.pnucene.2022.104478.
  • Solsvik, J.; Jakobsen, H. A. Bubble Coalescence Modeling in the Population Balance Framework. J. Dispersion Sci. Technol. 2014, 35, 1626–1642. DOI: 10.1080/01932691.2013.866902.
  • Ren, F.; Noda, N. A.; Ueda, T.; Sano, Y.; Takase, Y.; Umekage, T.; Yonezawa, Y.; Tanaka, H. CFD-PBM Approach for the Gas-Liquid Flow in a Nanobubble Generator with Honeycomb Structure. J. Dispersion Sci. Technol 2019, 40, 306–317. DOI: 10.1080/01932691.2018.1470009.
  • Chen, A. Q.; Huang, Q. S.; Gen, S. J.; Yang, C. Hydrodynamic Characteristics of Gas-Liquid Two Phase Flow in Jet Reactors. Chem. Indus. Eng. Pro. 2018, 37, 1257–1266.
  • Wu, Z. W.; Shi, Z. H.; Zhao, H.; Zhou, W.; Cai, X. S.; Liu, H. F. Effects of Surface Tension Variations on Breakup of Liquid Jet with Inner Bubbles. J. Chem. Eng. 2021, 72, 1283–1294.
  • Gerlach, D.; Alleborn, N.; Buwa, V.; Durst, F. Numerical Simulation of Periodic Bubble Formation at a Submerged Orifice with Constant Gas Flow Rate. Chem. Eng. Sci. 2007, 62, 2109–2125. DOI: 10.1016/j.ces.2006.12.061.
  • Ma, D.; Liu, M.; Zu, Y.; Tang, C. Two-Dimensional Volume of Fluid Simulation Studies on Single Bubble Formation and Dynamics in Bubble Columns. Chem. Eng. Sci. 2012, 72, 61–77. DOI: 10.1016/j.ces.2012.01.013.
  • Ali, M. F.; Yu, L.; Chen, X.; Yu, G.; Abdeltawab, A. A.; Yakout, S. M. Numerical Modeling for Characterization of CO2 Bubble Formation through Submerged Orifice in Ionic Liquids. Chem. Eng. Res. Des. 2019, 146, 104–116. DOI: 10.1016/j.cherd.2019.03.039.
  • Liu, Q.; Luo, Z. H. CFD-VOF-DPM Simulations of Bubble Rising and Coalescence in Low Hold-up Particle-Liquid Suspension Systems. Powder Technol. 2018, 339, 459–469. DOI: 10.1016/j.powtec.2018.08.041.
  • Li, X.; Liu, M.; Dong, T.; Yao, D.; Ma, Y. VOF-DEM Simulation of Single Bubble Behavior in Gas–Liquid–Solid Mini-Fluidized Bed. Chem. Eng. Res. Des. 2020, 155, 108–122. DOI: 10.1016/j.cherd.2019.12.028.
  • Lohse, D. Bubble Puzzles. Phys. Today 2003, 56, 36–41. DOI: 10.1063/1.1564347.
  • Sherwood, J. D. Potential Flow around a Deforming Bubble in a Venture. Int. J. Multiphase Flow 2000, 26, 2005–2047. DOI: 10.1016/S0301-9322(99)00123-8.
  • Eskin, D.; Meretskaya, E.; Vikhansky, A. A Model of Breakup of a Rising Bubble in a Turbulent Flow. Chem. Eng. Sci. 2020, 226, 115846. DOI: 10.1016/j.ces.2020.115846.
  • Chen, Y.; Ding, J.; Weng, P.; Lu, Z. B.; Li, X. W. A Theoretical Model Describing Bubble Deformability and Its Effect on Binary Breakup in Turbulent Dispersions. J. Mec. Theor. Appl. 2019, 75, 352–360. DOI: 10.1016/j.euromechflu.2018.09.004.
  • Birkhoff, G. Helmholtz and Taylor Instability. in Proc. Symposia in Applied Mathematics, Vol. XIII; American Mathematical Society: Providence, RI, 1962; pp. 55–76.
  • Thorpe, S. A. On the Kelvin-Helmholtz Route to Turbulence. J. Fluid Mech. 2012, 708, 1–4. DOI: 10.1017/jfm.2012.383.
  • Lee, H. G.; Kim, J. Two-Dimensional Kelvin-Helmholtz Instabilities of Multi- Component Fluids. Eur. J. Mech. B Fluids 2015, 49, 77–88. DOI: 10.1016/j.euromechflu.2014.08.001.
  • Haris, S.; Qiu, X.; Klammler, H.; Mohamed, M. The Use of Micro-Nano Bubbles in Groundwater Remediation: A Comprehensive Review. Groundwater. Sust. Dev 2020, 11, 100463. DOI: 10.1016/j.gsd.2020.100463.
  • Lee, K. H.; Kim, H.; Kuk, J. W.; Chung, J. D.; Park, S.; Kwon, E. E. Micro-Bubble Flow Simulation of Dissolved Air Flotation Process for Water Treatment Using Computational Fluid Dynamics Technique. Environ Pollut 2020, 256, 112050.1–112050.9. DOI: 10.1016/j.envpol.2019.01.011.
  • Ding, G.; Li, Z.; Chen, J.; Cai, X. An Investigation on the Bubble Transportation of a Two-Stage Series Venturi Bubble Generator. Chem. Eng. Res. Des 2021, 174, 345–356. DOI: 10.1016/j.cherd.2021.08.022.
  • Celis, G.; Rosero, C.; Loureiro, J.; Freire, A. S. Breakup and Coalescence of Large and Small Bubbles in Sudden Expansions and Contractions in Vertical Pipes. Int. J. Multiphase Flow 2021, 137, 103548. DOI: 10.1016/j.ijmultiphaseflow.2020.103548.
  • Liao, Y.; Lucas, D. A Literature Review of Theoretical Models for Drop and Bubble Breakup in Turbulent Dispersions. Chem. Eng. Sci 2009, 64, 3389–3406. DOI: 10.1016/j.ces.2009.04.026.
  • Emmanuel, S.; Thibaut, C.; Nicolas, B.; Daniel, N. Modeling of Cavitation Peening: Jet, Bubble Growth and Collapse, Micro-Jet and Residual Stresses. J. Mater. Process. Technol. 2018, 262, 479–491.
  • Gordiychuk, A.; Svanera, M.; Benini, S.; Poesio, P. Size Distribution and Sauter Mean Diameter of Micro Bubbles for a Venturi Type Bubble Generator. Exp. Therm. Fluid Sci. 2016, 70, 51–60. DOI: 10.1016/j.expthermflusci.2015.08.014.
  • Zhao, H.; Zhang, W. B.; Xu, J. L.; Li, W. F.; Liu, H. F. Influence of Surfactant on the Drop Bag Breakup in a Continuous Air Jet Stream. Phys. Fluids 2016, 28, 054102. DOI: 10.1063/1.4947575.
  • Murai, Y.; Tasaka, Y.; Oishi, Y.; Ern, P. Bubble Fragmentation Dynamics in a Subsonic Venturi Tube for the Design of a Compact Microbubble Generator. Int. J. Multiphase Flow 2021, 139, 103645. DOI: 10.1016/j.ijmultiphaseflow.2021.103645.
  • Song, Y.; Wang, D.; Yin, J.; Li, J.; Cai, K. Experimental Studies on Bubble Breakup Mechanism in a Venturi Bubble Generator. Ann. Nucl. Energy 2019, 130, 259–270. DOI: 10.1016/j.anucene.2019.02.020.
  • Song, Y.; Shentu, Y.; Qian, Y.; Yin, J.; Wang, D. Experiment and Modeling of Liquid-Phase Flow in a Venturi Tube Using Stereoscopic PIV. Nucl. Eng. Technol. 2021, 53, 79–92. DOI: 10.1016/j.net.2020.06.027.
  • Zhao, L.; Sun, L.; Mo, Z.; Tang, J.; Hu, L.; Bao, J. An Investigation on Bubble Motion in Liquid Flowing through a Rectangular Venturi Channel. Exp. Therm. Fluid Sci. 2018, 97, 48–58. DOI: 10.1016/j.expthermflusci.2018.04.009.
  • Dastane, G. G.; Thakkar, H.; Shah, R.; Perala, S.; Raut, J.; Pandit, A. B. Single and Multiphase CFD Simulations for Designing Cavitating Venturi. Chem. Eng. Res. Des 2019, 149, 1–12. DOI: 10.1016/j.cherd.2019.06.036.
  • Li, S.; Schwarz, M. P.; Feng, Y.; Witt, P.; Sun, C. Numerical Investigations into the Effect of Turbulence on Collision Efficiency in Flotation. Miner. Eng 2021, 163, 106744. DOI: 10.1016/j.mineng.2020.106744.
  • Jahangir, S.; Hogendoorn, W.; Poelma, C. Dynamics of Partial Cavitation in an Axisymmetric Converging-Diverging Nozzle. Int. J. Multiphase Flow 2018, 106, 34–45. DOI: 10.1016/j.ijmultiphaseflow.2018.04.019.
  • Tomov, P.; Bakir, F.; Ravelet, F.; Khelladi, S.; Sarraf, C.; Vertenoeuil, P. Experimental Study of Aerated Cavitation in a Horizontal Venturi Nozzle. Exp. Therm. Fluid Sci 2016, 70, 85–95. DOI: 10.1016/j.expthermflusci.2015.08.018.
  • Shi, R.; Wang, H.; Hubert, C. Bubble Convection and Bubbly Flow Turbulent Time and Length Scales in Two-Dimensional Plunging Jets. Exp. Therm. Fluid Sci 2018, 98, 278–289. DOI: 10.1016/j.expthermflusci.2018.06.008.
  • Zhang, H.; Yin, Z.; Chen, M.; Zhang, W. Experiment on Bubble Characteristics of Turbulent Bubbly Jets in Pipe Crossflow. Ocean Eng. 2023, 271, 113782. DOI: 10.1016/j.oceaneng.2023.113782.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.